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EFFICIENT IMPLEMENTATION OF A CLASS OF PRECONDITIONED
CON3UGATE GRADIENT METHODS*

STANLEY C. EISENSTAT"

Abstract. The preconditioned conjugate gradient (PCG) method is an effective means for solving
systems of linear equations where the coefficient matrix is symmetric and positive definite. The incomplete
LDL factorizations are a widely used class of preconditionings, including the SSOR, Dupont-Kendall-
Rachford, generalized SSOR, ICCG(0), and MICCG(0) preconditionings. The efficient implementation of
PCG with a preconditioning from this class is discussed.
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1. Introduction. Consider the system of N linear equations

(1) Ax =b,

where the coefficient matrix A is symmetric and positive definite. When A is large and
sparse, the preconditioned conjugate gradient (PCG) method is an effective means for
solving (1) [2], [4], [5], [9], [13]. Given an initial guess Xo, we generate a sequence {Xk} of
approximations to the solution x as follows:

(2a) ro b Axo
(2b) Solve Mr’o ro and set po =ro

FOR k 0 STEP 1 UNTIL Convergence DO

(2c) ak (rk, rk)/(pk, Apk)

(2d) Xk+ Xk -Jr- akPk

(2e) rk / rk akApk

(2f) Solve Mr’k+ rk+

(2g) bk (rk+l, r’k+l )/(rk, r’k)

(2h) Pk+I r:+l + bkPk.
The effect of the preconditioning matrix M is to increase the rate of convergence of
the basic conjugate gradient method of Hestenes and Stiefel [11]. The number of
multiply-adds per iteration is just 5N, plus the number required to form Apk, plus the
number required to solve Mr’k rk.

One widely used class of preconditionings are the incomplete LDL factorizations

(3) M (/ + L)/-a(/ + L)t,

where A --- L +D + L’, L is strictly lower triangular and D and/ are positive diagonal.
This class includes the SSOR [9], Dupont-Kendall-Raehford [7], generalized SSOR
[1], ICCG(0) [13] and MICCG(0) [10] preeonditionings. If we let NZ(A) denote
the number of nonzero entries in the matrix A, a straightforward implementation of
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PCG with a preconditioning from this class would require 6N + 2NZ(A) multiply-adds
per iteration.2

In this brief note, we show how to reduce the work to 8N + NZ(A) multiply-adds,
asymptotically half as many as the straightforward implementation.3 We give details in
2 and consider some generalizations in 3.

2. Implementation. The linear system (1) can be restated in the form

(4) [(I+L)-’A(I+L)-t][(I+L)’x]=[(I+L)-b]
or

(5)

But applying PCG to (1) with M (/ + L)/-I(/ + L’) is equivalent to applying PCG
to (5) with 37/=/-1 and setting x (/ + L)-.4 If we update x instead of at each
iteration, algorithm (2) becomes:

(6a) o (fi + L)-x ( x0 )

(6b) rio ro =o
FOR k 0 STEP 1 UNTIL Convergence DO

(6c) (, )/(&,

(6) x+ x +a( +L)-
(6e) -r+ r d
(6g) Compute r+x

(6g) b (?+, r+x )/(?, r)

Oa can be computed efficiently by taking advantage of the following identity:

Afi ( +L)-[( +L)+( +L)t- (2 -D)]( +L)-
(7)

( +L)- +( +L)-’[ -K( +L)-],
where K 2D -D. Thus

(Sa) t (D + L) ,
(Sb) & t+( +)-(& t),

which requires 2+NZ(A) multiply-adds, t can also be used to update in (6d), so
that the total cost for each PCG iteration is just 8N +NZ(A) multiply-adds (plus

Writiag M (+L)([ +-L), we solve Mr r by solving th triangular systems

( +L)t t, ( +-’)r t.
2 2N (respeively, N) multiply-adds can be saved by symmetrically scaling the problem to make

(respectively, D [).
A similar speedup for pairs of linear iterative methods is given
Both are equivaleat to applying the basic conjugate gradient method to the preconditioned system

(se 4, pp.
Again, 3N multiply-adds ca be saved by symmetrically scaring the problem so that [.
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an additional N words of storage), versus 6N+2NZ(A) for the straightforward
implementation.

3. Generalizations. The approach presented in 2 extends immediately to pre-
conditionings of the form

(9) M (1 +L)-( +L)t,
where is positive diagonal. Moreover, if we take K ---/ +/-D in (7) and (8), then/
need not be diagonal or even symmetric. In this case, D would reflect changes to both
the diagonal and offdiagonal entries of A in generating an incomplete factorization. If
we assume that only the nonzero entries ofA are changed, i.e., that (K)i is nonzero only
if (A)i is nonzero, then the operation count is 7N + NZ(A)+ NZ(K).

Another application is to preconditioning nonsymmetric systems. Let

(10) M= (1 +L)g-(l + U)

be an incomplete LDU factorization of a nonsymrnetric matrix A, where A--
L +D + U, L (respectively, U) is strictly lower (respectively, upper) triangular and D
and are diagonal. Then a number of authors have proposed solving the linear system
Ax b by using the conjugate gradient method to solve the normal equations for one of
the preconditioned systems

(11a) I=-[g(I+L)-’A(I+ U)-’][(D+ U)x]=[(I+L)-b]=-
(see 12]) and

(llb) .2x--[(J+ U)-l(l+L)-lA]x=[(+ U)-l(J+L)-lb]=-f
(see [14], [3]). 2/ can be computed as

(12) .2 (I + U)-I:[+(I +L)-(D + U-)]
in 4N + NZ(L)+ 2NZ(U) multiply-adds, whereas A/ can be computed as

(13a) /’= (/ + U)-I/,
(lab) / [’+ (/ +L)-(/ (2/ D)/’)]

in 4N + NZ(L)+ NZ(U) rnultiply-adds. Thus the preconditioning (1 la) would be more
efficient per iteration, although more iterations might be required to achieve compar-
able accuracy [14].6
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SPLINE INTERPOLATION AND SMOOTHING ON THE SPHERE*
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Abstract. We extend the notion of periodic polynomial splines on the circle and thin plate splines on
Euclidean d-space to splines on the sphere which are invariant under arbitrary rotations of the coordinate
system. We solve the following problem: Find u ,.(S), a suitably defined reproducing kernel (Sobolev)
space, on the sphere S to, A) minimize Jm(u) subject to u(Pi) zi, 1, 2, , n, and B) minimize

Z (u(Pi)- zi) + Aym(u),
Jj=l

where
2r

Jm(u)=Io Io(Am/2u(O, qb))2sinOdOdb, meven

--Io’If{(A’-l’/2u)2"l’+(A’-l’/2u)2}sinOdodb’sin2 0
modd.

Here A is the Laplace-Beltrami operator on the sphere andJ(u) is the natural analogue on the sphere, of the
quadratic functional (utah(0)) dO on the circle, which appears in the definition of periodic polynomial
splines. J(u) may also be considered to be the analogue of

appearing in the definition of thin plate splines on the plane. The solution splines are obtained in the form of
infinite series, which do not appear to be convenient for certain kinds of computation. We then replace J, in
A) and B) by a quadratic functional Q,, which is topologically equiValent to J,, on 7’,, (S) and obtain closed
form solutions to the modified problems which are suitable for numerical calculation, thus providing practical
pseudo-spline solutions to interpolation and smoothing problems on the sphere. Convergence rates of the
splines and pseudo-splines will be the same. A number of results established or conjectured for polynomial
and thin plate splines can be extended to the splines and pseudo-splines constructed here.

Key words, splines on the sphere, spherical harmonics, smoothing on the sphere

1. Introduction. This work is motivated by the following problem. The 500
millibar height (the height above sea level at which the pressure is 500 millibars) is
measured (with error) at a large number n of weather.stations distributed around the
world. It is desired to find a smooth function u u (/9, 4’) defined on the surface of the
earth (/9 latitude, $ longitude) which is an estimate of the 500 millibar height at
position (/9, b). There are many ways that this can be done. In this paper we develop
what appears to be the natural generalization to the sphere of periodic interpolating and
smoothing splines on the circle (see Golomb [12], Wahba [27]) and thin plate splines on
Euclidean d-space (see Duchon [6], Meinguet [18], Wahba [28]).

To obtain a periodic interpolating or smoothing spline on the circle C one seeks the
solution to one of the problems: Find u ’m(C) to minimize

A) Jm(u) subject tou(ti)=zi, l, 2, n

Z (u(t,)-z,)+x(u)
Ii=1

* Received by the editors November 29, 1979. This research was supported by the U.S. Army Research
Office under contract DAAG29-77-0209.
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Here

(1.1)
2r

J,,,(u) Io (u(")(t))2 dt,

ti[0,2r] and ,,(C)={u" u, u’,..., u ("-11 abs. cont., u(’2[0, 2r], u(J)(0)
u(J)(2zr), ] 0, 1, , m 1}. To find a thin plate interpolating or smoothing spline on
Euclidean d-space Ea, one finds u ,,(Ea) to minimize A) or B) above, where now
ti (x, x2i, , xai) Ed and

(1.2) Y,.(u) dx dx2 dxa.
il, i2," ,im=: d OXil

,,(Ea)is defined in Meinguet [18]. To obtain a thin plate interpolating or smoothing
spline it is necessary that 2m-d>0, since otherwise the evaluation functionals
u - u(t) will not be bounded in Yg,,(Ea) and thus will not have representers which are
used in the construction of the solution.

Duchon has called the solutions to problems involving J,, in Euclidean d-space thin
plate splines, because, in two dimensions with m 2,

\OX1 OX2]

2

is the bending energy of a thin plate. Interpolating and smoothing thin plate splines have
been computed in a number of examples by Franke, Utreras, Wahba, Wahba and
Wendelberger, and Wendelberger for data given in the form of an analytic function
which is evaluated by computer at t, t2," ", t, [9], for function data with simulated
errors [26], [28], [30] aiad for measured 500 millibar height data [31], with very
satisfying results. Fisher and Jerome in a classic early paper [8] answered some
important questions concerning interpolation problems on f a bounded set in R a

associated with general elliptic operators.
For the analysis of meteorological data, we would like to be able to compute

smoothing splines on the sphere. To motivate the definition of J,, for the sphere, we first
take a look at the Sobolev spaces ’,, (C) of periodic functions on the circle. ,, (C) is
the collection of square integrable functions u on [0, 2zr] which satisfy

2m 2 p2mb2(1.3t a+ Y v a+ Y. <o,
v=l v=l

where

We have

(1.4)

a, =- cos uOu(O) dO,

b - sin yOu (0) dO,

v=O, 1,...,

v=l,2,....

(’)(0))zJ,,(u) (u dO= ., vZa2 +
v=l v=l

for u ,(C). ,(C) is thus a space of (periodic, square integrable) functions whose
Fourier coefficients {a,b} decay sufficiently fast to satisfy (1.3). The functions
{cos uO, sin uO} are the (periodic) eigenfunctions of the operator D2"(D2mu u(2m)
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which appears when Jm (U) of (1.1) is integrated by parts and u is sufficiently smooth and
periodic:

Jm(u) u udO.

If one formally integrates (1.2) by parts, and u is sufficiently smooth and decreases to 0
at infinity, then one obtains

J,,(u) (-1)"’I I., u " u dxx dxd,

where zu is the Laplacian,

2u t2U t2U?XU=ox +"

The analogue of on the sphere is the Laplace-Beltrami operator defined by

1 1
Au sin2. 0 u,, +--:-- (sin Ouo)o,

slnff

where 0 [0, r] is latitude and b [0, 2zr] is longitude. This is the restriction of the
Laplacian in 3-space to the surface of the sphere; see Courant and Hilbert [3, Chapt. V,
VIII, and Whittaker and Watson [32]. The role of the eigenfunctions
{(1/x) cos vO, (1/x/) sin vO} in ,(C) is played in ,(S), (S is the sphere) by the
normalized spherical harmonies {yk (0,b)}=0 ,=- (defined in 2), which are
the (periodic) eigenfunetions of the Laplaee-Beltrami operator A’, and the role

2mlO o2mof the eigenvalues {u2", u t=x of is played by the eigenvalues of A". A has
the single square integrable periodic eigenfunction Yo(O, b)= 1, corresponding to the
eigenvalue O. We now define ,, (S) as the space of square integrable functions u on S
with

2
U uk

(1.5) lu0ol < y. oo,
u=l k=-u Auk

where

(1.6) Uk Is yk (P)u (P) dP

and {AS }, (A - [v(v + 1)]k) are the eigenvalues of A" corresponding to { yk}. ,,, ($)
is thus a space of square integrable functions whose Fourier Bessel coefficients with
respect to the spherical harmonics decay suciently fast to satisfy (1.5). Let Y be
defined by

(u) (A/2u sin 0 dO d$, m even,

(1.7)

ff 0 (A(-x)/2u)+sin2 0
(a(-x)/2u) sin0 dO d, m odd.

It is not hard to show that, for u ,(S),

(1.8)
2

y.(u)= E u...
v=l k=-v
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A number of results which are known or conjectured for polynomial splines on the
circle and thin plate splines on Ed will carry over to the thin plate splines and
pseudo-splines on the sphere. They include optimality properties of the generalized
cross-validation estimate of h and m [4], [25], convergence rates for smoothing splines
with noisy data, properties of associated orthogonal series density estimates, and
interpretation of interpolating and smoothing splines as Bayes estimates when u is
modeled as the solution to the stochastic differential equation A"/2 u "white noise."
Details and further references may be found in Wahba [29]. The corresponding splines
when u is modeled as a general stationary autoregressive moving average process on S
are also given in Wahba [29], as well as possible models encompassing nonstationarity
(anisotropy). The reader interested in meteorological applications may be interested in

2consulting Staniord [24], where ensembles of {Uk} defined in (1.6) have been
computed from measured satellite radiance data and are suggestive of an appropriate
choice of m in certain meteorological applications. The results here also show that
variational techniques for meteorological data analysis similar to these pioneered by
Sasaki [21] and others can be carried out on the sphere; see also Wahba and
Wendelberger [30]. Part of the importance of the present work is in its potential
applicability to important meteorological problems, some of which are mentioned
near the end of 2.

We seek u .,(S) to minimize

A) J,,,(u)

B)

subject to u (Pi)= zi, 1, 2,. , n,

1__ (u(Pi)_zi)2+Aj,,,(u)

where P S, and J., is defined by (1.7).
We cannot solve these problems for m 1 for the same reason they cannot be

solved in Ed for 2m d <- 0, that is, because the evaluation functions are not continuous
in 1(S), that is, 1(S) is not a reproducing kernel space. However, for m 2, 3,.
we will give the explicit solution to those two problems, which we will call thin plate
splines on the sphere. It is actually not hard to obtain the solutions, since we can
construct a reproducing kernel for ,.(S), with J,. (.) as a seminorm, from the well-
known eigenfunctions and eigenvalues of the Laplace-Beltrami operator. Given the
reproducing kernel [2], the solutions to such problems are well known, and in fact
problems A) and B) can be solved with u(Pi) replaced by Liu, where L is any continuous
linear functional on .,(S). See, tor example, Kimeldort and Wahba [17] and
references cited there.

Unfortunately we only know the aforementioned reproducing kernels in the form
of infinite series. It appears that no closed form expression exists which is convenient for
computational purposes. Wendelberger [31] has computed the reproducing kernels
given below for m from 2 to 10 by evaluating the infinite series, and it is likely that
satisfactory computational procedures for interpolation and smoothing splines on the
sphere can be developed based on the infinite series. However, for general continuous
linear functionals it may be important to have a reproducing kernel in closed form.
Furthermore, to compute certain tunctionals of the solution, for example, derivatives, it
may be important to have a closed form solution. For this reason we suggest replacing
J., (.) by another quadratic functional Q., (.) which is topologically equivalent to J., (.)
in the sense that there exist t and/3, 0 < c </3 <0 such that

aJ,(u)<=O..,(u)<=J,,,(u), all uYg.,(S).
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We give the reproducing kernel associated with Q,, in closed form. It involves only
logarithms and powers of monomials of sines and cosines, and appears quite suitable for
the numerical computation of the solutions of A) and B) and related problems with
replaced by Q,,. We will call the resulting interpolating and smoothing functions thin
plate pseudo-splines on the sphere. Convergence rates for the thin plate pseudo-splines
will be the same as those for the thin plate splines on the sphere because of the
topological equivalence of J,, and

In 2 we derive the thin plate spline solutions to problems A) and B), and in 3
we obtain the thin plate pseudo-spline solutions, where J, is replaced by

We remark that the development of 2 can no doubt be generalized to establish
splines associated with the Laplace-Beltrami operator on compact Riemannian mani-
folds other than the circle and the sphere; see Gine [10], Hannan [14], Yaglom [33]and
Schoenberg [23]. However this is not pursued further.

2. Spherical harmonics and the solution to problems A) and B) on the sphere. The
spherical harmonics {U k,, (0, &)} are defined by

u (0, ) cos kP(cos 0),

sin kPk,, (cos 0),

P(cos 0), k 0,

k=l,2,...,u

k =-l,-2,...,-u

v=0,1,2,...,

where pk (Z) are the Legendre functions of the kth order,

P(z) (1 z2)k/2( dz) P,(z),

and P,(z) is the vth Legendre polynomial. Recursion formulas for generating the P
may be found in Abramowitz and Stegun [1].

It is well known that the {U., k=-v,... v,v=O, 1, } form an (S)-
complete set of ignfunctions of the Laplace-Beltrami operator of (1.4) satisfying

AU k=-v, v, v=O, 1,v(v + 1)U

See Courant and Hilbert [3], Sansone [22]. Let

]2v+ 1 oyO=. 47r
U,

,/2V+1 (v-k)!yk =2 (v+k)! Uk’

Then (Sansone [22, p. 264, 268])

YP) dP ,

v=O, 1,...

k=1,2,"’, u=l,2,....

and we have the addition formula

yk, (p) yk, (p,) =2v+ 1p,(cos y(p, p,)),
k 4r

where y(P, P’) is the angle between P and P’. The {yk} form an orthonormal basis for
2(S). Jones [16] has used a finite set of spherical harmonics to estimate 500 millibar
heights by regression methods. The spherical harmonics are also utilized in several
numerical weather prediction models [11].
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Let o(S) be the subset of 2(S) with an expansion of the form

u(P)--- Y. U.kY (P),
u=l k=-u

where

U.k IS U (P)Y (P) dP,

satisfying

where

2

v=l k=-v A,k

(2.2) a [v(v + 1)]-m.

Functions in 0,, ($) satisfy

s
U(P) dP O,

since the 0, 0th term Yo 1 has been omitted from the expansion (2.1).
o,,, (S) is clearly a Hilbert space with the norm defined by

2

(2.3) IlUII2 b/vk
/91--- E

v=l k=-Ak

for any rn _--> 0. For m > 1, define K(P, P’), (P, P’) S x S by

K(P, P’)= Km (P, P’)= . hY(P)Y (P’)
v=l k=-v

(2.4)
2v+1

--4rr ,,= vm(v + 1)
P(COS v(P, P’)).

Since IP (z)l--< 1 for {zl--< 1 (Sansone [22, p. 187]), the series converges uniformly for
any rn > 1 and K(P, P’) is a well-defined positive definite function on S x S with

(K(P,.), K(P’,.)) K(P, P’),

where (., ) is the inner product induced by (2.3). Furthermore, it is easily verified that,
for m an integer > 1,

s
K(P, R)AR)K(P’, R) dR K(P, P’),

where A(") means the operator A applied to the variable R. This follows since
A Y IX Y. Thus, for m an integer > 1, K(.,.) reproduces under the inner product
induced by the normJ (.), and

J(U)
=1 k=-v Ark

with

Js u (P) yk (p) dP for any u im.Uvk

m(S) is therefore the reproducing kernel Hilbert space (r k h s) with reproducing
kernel (rk)K(.,.).
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The space ,,(S) in which one wants to solve problems A) and B) is

(s) (s){},
where {1} is the one-dimensional space of constant functions. e.(S) and {1} will be
orthogonal subspaees in (8) if we endow () with the norm defined by

Ilull==J (u)+ u(P)

The following theorem is an immediate consequence of these facts and Kimeldorf and
Wahba [17, Lemmas 3.1, 5.1 ].

THEOREM 1. The solutions u.. and u...x to problems A) and B) on the sphere are
given by

(2.5) u...x (P) c,K (P, P) + d,
i=1

where e (ci, c.)’ and d are given by

(2.6) e= (K. + nAI)-X[I T(T’(K. + nAI)-T)-T’(K. + nAI)-]z,
(2.7) d (T’(K. + nAI)-T)-T’(K. + nAI)-Xz,
where K. is the n x n matrix with ], kth entry (K.)i given by

(2.8)

(2.9)

and

Also

(K) K(P, P),

T=(1,...,1)’

z=(z, z,)’.

Un, Ur,m,Oo

The continuous linear functionals Liu u(Pi) may be replaced in the problem
statements by any set of n linearly independent continuous linear functionals on ,(S)
which are not all identically 0 on {1}. Then, as is usual in rk theory, to obtain the solution
one replaces K(P, P) in (2.5) by LK(P,. ),K(P, Pi) in (2.8), by Lip)L<p,)K(P, P’), and
the ith component of T in (2.9) by L(1). (See Kimeldorf and Wahba [17].) One
example of useful Li is Liu s u(P) dP; i.e., the data functionals are regional averages
(see Dyn and Wahba [5]). Furthermore, if zi Liu +ei, where u is fixed, unknown
function in ,,, (S) and the {e} can be modeled as i.i.d. At(0, tr2) random variables, then
(provided A is chosen properly; see [4], [30]) an estimate of Lu for L any continuous
linear functional on ,,(S) is provided by Lu,.x. Lu sin Ouo(P) and Lu u(P) are
continuous linear functionals on ,,(S) for m _-> 3. Therefore, this provides a technique
for estimating meteorological properties of interest involving the derivatives of u, for
example, the geostrophic wind; see [30]. Other potential applications are to the
estimation of budgets (Johnson and Downey [15]), and the geostrophic vorticity
(Haltiner and Martin [13]).

We remark that the equations (2.6) and (2.7) for c and d can be readily verified to
be equivalent to

(2.10) (K, + nAI)c+dT z,

(2.11) T’c= 0.
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If we assume K, and T are given, then (2.10) and (2.11) lend themselves more readily to
numerical solution than the computation of (2.6) and (2.7). See Paihua Montes [19],
Wahba [28], Wendelberger [31].

In order to have a closed form expression for K(Pi) it is necessary to sum the series

(2.12) k,,(z) Y. 2v + 1

v=l b’m(v + 1)"
P,.(z).

A closed form expression for m 1 (z 0) can be obtained but does not interest us
here.

To attempt to sum (2.12) for rn 2, we note that

(2.13) vz(v+l)2--v2 (v+l)/--= logh 1- h"dh, v=l,2,’.’.

Using the generating formula for Legendre polynomials (Sansone [22, p. 169]),

(2.14) E hP(z) (1-2hz + h=)-/2-1,

gives

-l<h<l,

Io ( )( 1 1) dh.(2.15) ka(z)= log h 1-
/l-2hz + h

Repeated attempts to integrate this by parts using formulas for indefinite integrals
involving expressions of the form x//" 2zh / h 2, and related integrals to be found in
Pierce and Foster [20] and Dwight [7], led us to terms with a closed orm expression plus
a term involving Dwight [7, formula 731.1] whose right-hand side is an infinite series.
This exercise, plus a helpful conversation with R. Askey who suggested that the sum
could be reduced to a dilogarithm, convinced us that no readily computable closed orm
expression was to be found. For this reason we seek to change the problem slightly so
that readily computable interpolating and smoothing formulas can be obtained. We do
this in the next section.

3. Thin plate pseudo-splines on the sphere. We seek a norm
which is topologically equivalent to j1,,/2 (u) on $e,,(S) and for which the reproducing
kernel can be obtained in closed form convenient for computation.

Define

where

Since

:u2

Q(u) . ---
we have

Uk IS u(P) yk (p) dP,

-1

1 1 1
m2m,k Ark vk’

1., O.(u)<-&(u)<-_O(u), u e (s),

v l, 2, k =-v, v, m=2,3,...

rn
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and, thus the norms jx/2 (.) and OX/2 (.) are topologically equivalent on Yg,,(S). The
reproducing kernel R(P, P’) for Yg,,(S) with norm Q/2 (.) is then

(3.2)

R (P. P’) R,. (P. P’) E i :kyk (p)yk (p,)
v=l k=-u

1 1=2r = (u + 1)(u + 2)" (u + 2m 1)
P(cs y(P’ P’))"

A closed form expression can be obtained for R (P, P’) as follows. Since

1 Io 1
r!

(1-h)h dh(u+l)...(u+r+l)’ r 0,1,2,

then by using the generating function (2.14) for the Legendre polynomials we have

1 1
R(P, P’)= = (u + 1)(u + 2)"" (u + 2m 1)

P(z)

(3.3t
1 1 ]2-- (2m-2)!qz’-(z)-(2m-1)!

where

and

z cos y(P, P’)

)" )-/(3.4) q,(z)= (1-h (1-2hz+h dh, re=O, 1,.."

Formulas for hm(1-2hz +h2)-1/2 dh, m =0, 1, 2 and recursion formulas for
general m in terms of the formulas for m- 1 and m- 2 can be found in Pierce and
Foster [20, pp. 165,174, 177, 196]. qm was obtained by hand for m 0, 1, 2 and 3. In
the middle of this dull exercise P. Bjornstad observed that the MACSYMA program at
MIT, which could be called from the computer science department at Stanford where
this exercise was taking place, could be used to evaluate q,, (z) recursively. He kindly
wrote such a program and the results appear in Table 1. Thus, for example, R (P, P’) for
m 2 involves qz and, from the table,

A(12W2-4W)-6CW+6W+ I
q[2]

2

giving

=1 /1----) 1-z 2_4(1-z)]_ 12(1-z 3/2

qz(z’ {ln(l+ [12(--) 2 2 )
Note that q[0] which appears in the m 1 case does not lead to a proper rk since qo(1) is
not finite. However, a proper rk exists for any m > 1, and the table can be used to define
q2m-2 for m , 2, , 6.

We collect these results in
THEOREM 2. The solutions un.,, and un.,.x to the problems: Find u 27g,, (S) to

A’) minimize Q,,(u) subject to u(Pi)= zi, i= 1, 2,..., n,

B’) minimize 1_ , (u(Pi)- zi)2 + hQ,,(u),
ni=l
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are given by

a.,.. a.,.,o, a.,..,x (P) c,R (P, P,) + d,
i=1

where R (P, P’) is defined by (3.3) and (3.4) and and d are determined by

(Rn + nhI)- dT z, T’e O,

where R, is the n n matrix with j, kth entry R(Pi, Pj) and T (1,. , 1)’.

TABLE

q,,,(z)= (1-h)"(1-2hz +h2)-/ dh,

Key. q[m]=q,,.,[z], A=in(l+l/’,/),

m=0, 1,..., 10,

C 2,,/-),W (1- z )/2

q[O] A

q[1] 2AW-C+I

q[2] (A(12Wz-4W)-6CW+6W+ 1)/2

q[3] (A(60W3- 36 W:’) + 30W + C(8 W- 30 W:’)- 3 W + 1)/3

q[4] (A (840W4- 720W + 72 W2) 4- 420W + C(220W2- 420W3) 150W2- 4W + 3)/12

(A(7560W 8400W4 + 1800W3) + 3780W4 + C(-3780W4 + 2940W3- 256W2)
-2310W3+60W2-5W+6)/30

q[6]
(A(27,720W6- 37,800W + 12,600 W4- 600 W3) + 13,860W

+ C(- 13,860W + 14,280W4- 2772 Wz) 11970W4 + 1470W + 15 W2- 3W + 5)/30

q[7]

(A (360,360W + 582,120W6 + 264,600W + 29,400 W4) + 180,180W6

+ C(- 180,180W6 + 231,000W 71,316 W4 + 3072 W3)
-200,970W + 46,830W-525 W + 21 W2- 7W+ 15)/105

q[8]

(A(lO,810,800WS-20,180,160W + 11,642,400W6 + 2,116,800W + 58,800W)

+ 5,405,400W + C(-5,405,400W + 8,288,280 W6- 3,538,920W6 + 363,816W)

-7,387,380 W6 + 2,577,960W5-159,810 W4- 840W + 84 W2-40W + 105)/840

q[9]

(A (61,261,200W9 129,729,600W + 90,810,720W 23,284,800W6 + 1,587,600W5)

+ 30,630,600W8 + C(-30,630,600W + 54,654,600W7- 29,909,880W

+ 5,104,440W 131,072 W4) 49,549,500W + 23,183,160W6

-2,903,670W + 17,640W-420W + 72W-45W+ 140)/1,260

(A(232,792,560Wx- 551,350,800W9 + 454,053,600W8- 151,351,200W7 + 17,463,600W6

317,520W) + 116,396,280W9 + C(- 116,396,280W9 + 236,876,640W

158,414,256W + 38,507,040W6- 2,462,680W5) 217,477,260W

+ 127,987,860W7- 24,954,930W6 + 930,006 W + 2,940W4

180W +45 W1-35 W+ 126)/1,260
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Of course the remarks following Theorem 1 concerning general continuous linear
functionals and computing procedures apply here also.

4. Acknowledgments. We would like to thank P. Bjornstad for writing the
computer program which generated Table 1, (3. Golub for his hospitality at the
Stanford University Numerical Analysis Group where some of this work was done
and M. Ghil for helpful discussions concerning related stochastic differential equations.
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THE MOLLIFICATION METHOD AND THE NUMERICAL SOLUTION OF
AN INVERSE HEAT CONDUCTION PROBLEM*

DIEGO A. MURIOt

Abstract. We show how the inverse problem can be stabilized by reconstructing a slightly "blurred"
image of the unknowns. The numerical problem is solved with an absolute minimum of computation and the
proposed method is favorably compared against others commonly in use.

Key words, ill-posed problem, mollification method, heat transfer conduction

1. Introduction. In this paper we consider a transient heat conduction problem on
a semi-infinite slab with one-dimensional symmetry in which, after measuring the
transient temperature history F(t) at some interior point Xl, we would like to recover
the boundary heat flux q(t) and temperature f(t). The temperature history F(t) is
approximately measurable for all in (-c,

This inverse problem is an improperly-posed problem in the sense of Hadamard
[7]; that is, there are no decent norms for the data and solutions such that the solution
depends continuously upon the data.

It is known that certain types of continuous dependence on data can usually be
restored by restricting attention to those solutions satisfying certain prescribed global
bounds; see Miller [9] and [10], for example. If the unknown function q (or f) is quite
smooth, for instance, it is reasonable to assume that some high order derivative of q
satisfies a known L2-bound (Manselli and Miller [8]).

However, for many problems of interest it is to be expected that the unknown
function is not very smooth. In this case, the inverse problem can be stabilized if, instead
of attempting to find the point values of q, we content ourselves with attempting to
reconstruct a slightly "blurred" image of q. One natural functional is Jq, the "3-
mollification" of q, that is, the convolution of q with the Gaussian kernel p of "blurring
radius" 3. Such an approach was also taken in [8].

One of the first papers on inverse heat conduction was written by Stolz [14]. His
procedure is an integral equation method which, when discretized, allows a step by step
recursive calculation of the solution, but which is unstable if the time steps are made
small. Integral equation methods with step by step solutions are also used by Sparrow et
al. [13] and by Beck [1], [2], who however adds the distinct improvement of allowing the
least-squares use of several future data points to compute the solution at the present
time. Burggraf 13] uses a truncation of the classical power series method for attempting
to solve the Cauchy initial value problem; however, for this to be convergent the
functions involved would have to be analytic and the space interval sufficiently small.
Other approaches, using finite difference methods, are studied by Frank [6] and
Davies [5].

In the papers mentioned above, the assumptions on the solutions and on the choice
of parameters are not usually clearly stated and the consequent continuity with respect
to the data is not adequately studied.

In 2 we present the nondiscrete version of the semi-infinite one-dimensional
problem with data specified on a continuum of times and data error measured in the
L2-norm, and derive stability bounds for the inverse problem.

* Received by the editors May 5, 1980.
t Department of-Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221.
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The discretized version, involving data at only a discrete sampling of times,
occupies our attention in 3.

In 4 we introduce certain direct and inverse convolution kernels with which we
shall compute our numerical solution and analyze the solution error. We also compare
the mollification method (MM) against the one commonly in use due to J. Beck [12].
The graphical comparison of the inverse and direct kernels for the MM method and
Beck’s shows the clearly superior stability and monotonicity properties of the MM
method for a given resolution width. Finally, we present more numerical results of
interest.

2. Semi-infinite body. Description of the problem. We consider a semi-infinite
slab with one-dimensional symmetry; after measuring the transient temperature history
F(t) at some interior point x, we would like to recover the boundary heat flux q(t) and
temperature f(t).

We assume linear heat conduction with constant coefficients. After appropriate
changes in the space and time scales we may consider without loss of generality the
normalized problem with constant conductivity 1 and heat capacity I. Moreover, we
measure the data temperature at the interior point x I.

The problem can be described mathematically as follows"
The unknown temperature u(x, t)satisfies

(2. I) u u, 0 < x <, -< <, u bounded as x -> ,
(2.2) u(l, t) F(t) with corresponding approximate data function F(t),

(2.3) -u(0, t) q(t), the desired but unknown heat flux function.

q(t)= ?

ut=u F(t)F(t)

1

The temperature function f(t) is of course also desired, but since it depends simply and
stably on q(t) we do not need to bother to analyze its computation.

The sinusoidal in time solutions of the heat equation (2.1) are of the form

(2.4) e-.+.)x iwt J[_e where/x= r=sign(w).

From (2.2) and the boundary condition (2.3) we get
-(+ir)e

(2.5) F(t) =- Aq(t) q(t).
tx + crt
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Thus, if

(2.6) q(t) e w’,
then

--(/. +ir)

(2.7) Aq(t)
e iwte
I + itrtx

showing that the operator A is strongly smoothing for high frequencies w. In fact, for
the direct problem, a high frequency sinusoidal component is damped by the factor
e-"(x//z)-I and delayed in its phase by the amount  /,/21wl /

Conversely, however, the inverse problem (attempting to go from F(t) Aq(t) to
q(t)) magnifies an error in a high frequency component by the factor e"x/-/x, showing
that this inverse problem is greatly ill-posed in the high frequency components.

The stabilized inverse problem. For the moment, in order to use Fourier integral
analysis, we are going to assume that all the functions involved are LE-functions on the
whole line (-c, ) and we will use the corresponding LE-norm to measure errors. This
is rather unnatural, since in many applications one might expect the temperature and
the flux never to tend to 0 as - +/-c but to oscillate about in bounded fashion forever.
Nevertheless, this assumption will be later loosened by switching to L2-norms on
bounded intervals of interest.

There are several different ways to stabilize the inverse problem, despite the fact
that errors in the high frequency components of F(t) are greatly magnified. One can, for
example, hypothesize that the unknown q itself is quite smooth, i.e., that some high
order derivative of q satisfies a known prescribed L2-bound. For example, we might
know a priori that

(2.8) Ilq"ll <- E.

Since 4"(w)=-w2(w), this bound in terms of the Fourier transform means

(2.9) 2zr Iw:4ldw

Such a bound, therefore, just forces the high frequency components of 4 to be fairly
small. Since this is the case, we can attempt to determine rather stably the pointwise
values q(:) at times of interest.

We thus have the problem: Attempt to find the value of q(:) at some time s of
interest, given that

(2.10) IIAq - ll E,

(2.11) IIq"ll <E.

However, this problem leads to only very poor stability. In fact, the error can be
guaranteed to go down only logarithmically as e 0.

On the other hand, for many problems of interest, it is to be expected that the
unknown q is not very smooth; thus only a LE-bound on q itself, rather than on some
high order derivative of q, seems appropriate. Because of these considerations, it is
natural to assume only a known L2 global error bound on q,

(2.12) Ilqll=<E.
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This bound in terms of the Fourier transform means

(2.13) 2zr I12 dw <-E,

and in this case there is nothing that adequately forces down the high frequency part of
4(w). Therefore, instead of attempting to find the pointwise values of q, we must lower
our sights and seek instead some meaningful and useful functional of q which strongly
damps the high frequency part of t (w).

One such useful functional is Jq, the "g-mollification" of q at time t, defined as

(2.14) Jq(t) =- (p.q)(t), where

1
(2.15) p(t)=-e--t2/2

is the Gaussian kernel of "blurring radius" 8.
We notice that 08 falls to nearly zero outside a few 8 radii from its center, is positive

and has total integral 1. Jq merely smooths off the corners o q and damps those short
term oscillations on a scale <8 while still representing faithfully the longer term
features of q. The fact that, among all possible mollification kernels of "spread" 8, the
Gaussian kernel has the smallest spread of its Fourier transform makes it a natural
choice to work with.

The Fourier transform of Jq is given by

(2.16) J(w) 2zr e-W282/44(w ).

Clearly, this mollification damps those Fourier components of q with wavelength
2r/w much shorter than 27r8; the longer wavelengths are damped hardly at all.

Moreover, Jq(t) at t- 0 gives

(2.17) Jq(O) O(-s)q(s) ds e (w) dw.

We thus have the following stabilized problem: Attempt to find the linear function
Jq(:) at some time : of interest and for some assigned blurring radius 8, given that q is a
particular function satisfying

(2.18) IIAq -/11 <= e,

(2.19) Ilqll=<E.

It will turn out in the stability analysis that the bound (2.19) is not necessary to
stabilize this problem; the data error bound (2.18) by itself is sufficient to assure
Lipschitz continuous dependence on the data as e tends to zero, provided we keep 8
fixed.

However, the prescribed bound (2.19) can actually aid the stability in the case of e
which are not small, or in the case of data at only discrete sampling points in a limited
data interval, as will occur in the physically practical numerical methods of 3.

Stability analysis. The problem is now in a form that can be solved by the method
of least-squares; see Miller [9] and [10].

This method is a "nearly-best-possible-method" in the sense that for any
seminorm (.) which might be used to measure the error, it gives an approximation to q
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which satisfies the error bound

(2.20) (- q)-<_ 2M(e, E), where M(e, E) is the "best-possible-stability-bound,"

(2.21) M(e, E) sup {(q}: [IAqll <-- e, [[qll--< E}.

As a seminorm to measure the error, we will use the absolute value of the linear
function Jsq() at some fixed time : of interest, i.e.,

(2.22) (q())= larnq (:)1.

If q satisfies (2.18) and (2.19), it also satisfies

2

(2.23) II/-Aqll2+() Ilqll--<2e 2,

and we have lost at most a factor of x/ going from the two constraints to the one.
Let our approximation be chosen such as to minimize

(2.24)

The canonical equation for this minimization is given by

(2.25) {A*A + ()2I} gI A*I.
We can now derive an estimate or M(e, E) or the linear unctional Jsq(). We

may of course assume the time of interest to be s 0.
We want the supremum of

,,_If= e-W2n:’/40<w)dw(2.26)

with respect to the two constraints

+oo -(t*+ itrt,) 12

(2.27) IIAqll2 2r
e

4(w) dw <- e
+ i#

and

(2.28) Ilqll-- 2r I_ 1ol= dw

(2.29)

1/2

+m 1/2

8"//’-1/21f_ e -w=82/2 e2t* 2 dw}
Since e-w22/2 is about 0.6 for w <_-wl =-1/64..nd falls rapidly to zero for w >

2e2" (w/2)e 2wx, while on the other hand tx grows only slowly with w, it

However, it is sufficient to bound (2.26) by the single constraint (2.27) alone. Using
the Cauchy inequality, we obtain
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follows that

Io }
/2wll e dwIJq(0)l--< 2er-/2 2 2,,

(2.30)
21/2,rr-1/23 -1_-< e exp (1/x/),

which as e 0 becomes the best possible bound but for a factor of two, for fixed 3.
This shows that the error can be guaranteed to go down in Lipschitz fashion as e 0

for fixed 8.

3. Diseretized problem. Transition to the discrete ease. For many problems of
interest, the requirement that our functions are L2-bounded on the whole infinite
interval (-, ) is very unnatural. Instead, it seems more appropriate to assume that q
is locally L2-bounded, uniformly on every suciently long interval, and that the data
for Aq are measured at a discrete set of equally spaced data points in some finite interval
of length ; we then seek to reconstruct Jq() at some point approximately opposite
the middle of the data set, as shown in Fig. 1.

cl c,_ =0 c,

x=O [ .. =

-/3/2 /z, =/z..

x=l

ill2

_1
d d2 d3 dx-, d,

0: discrete data set where Aq .
x. constraint set where q is bounded.
(R): desired reconstruction point.

FIG.

We pose, then, the following precise problem" Suppose q is an unknown function
satisfying

(3.1) liP-aqll,o,-<- e,

(3.2) Ilqllc -<- E,
for every interval C of length greater than or equal to a certain minimal value Bo--</3.
We wish to approximately determine the linear functional Jsq() at some time : of
interest; without loss of generality, we choose our point of reconstruction to be 0.

In this problem, the data set consists of K points dl,..., dk in the interval
[-//2, fl/2], with equal spacing As /(K-1). The data function F is a discrete
function measured at these sampling points. The two norms used are the discrete (on the
data set) and continuous (on the interval C) root mean square norms.

The interval I-B/2, B/2] should contain all the data or Aq which might reason-
ably be expected to enter into the reconstruction of q at time : 0, provided we make B
sufficiently large. If that is the case, since the operator A makes Aq so smooth, we have
reason to believe that a discrete data sampling of Aq in [-fl/2,//2] contains just about
as much information as a continuous sampling, provided that the sampling interval As is
made sufficiently small.
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Aq is given by the integral operator

(3.3) Aq(t)= P(t-s)q(s)ds,

where the kernel function P has the formula

-s))-l/2exp(-1 if t>0,
(3.4) P(t- s)

0 if -< 0.

We note that P is nearly zero for small t- s, rises up to a maximum at t- s 0.5 and
then slowly decreases monotonically to zero. We therefore see that the values of q near
the time : of interest influence the value of the data Aq(t) almost not at all for small
t-:, and very much for longer t-:.

In other words, Aq(t) depends strongly on almost the entire "past history of q."
This means that/3/2 should be taken so large that the number of points in the discrete
data sampling interval [-/3/2,/3/2] will become enormous when the sampling interval
As is made sufficiently small.

One way of avoiding this fact is to subtract from the actual data Aq (t) the influence
of the past history of q. Of course, this implies the knowledge of q for all previous times.
Because of this difficulty, we will lower our goal for the moment and assume, as an
alternative,

(3.5) Aq(t)=O for t=<0.

The choice of/3/2 sufficiently large certainly allows us to approximate our problem
rigorously by a completely discretized one, with q replaced on the constraint set
[-/3/2 + At/2,/3/2- At/2] by a piecewise polynomial of the form

L

(3.6) (t) Z ai(t)I(t) with (L + 1) At =/3.
j=l

Here, Ii(t) is the characteristic function of the jth subinterval [(j -1/2)At -/3/2, (j + 1/2)At
/3/2], and

M

(3.7) ai(t)= Z Xxtt,(t),
i=1

where the xlti’s are some suitable chosen basic functions or low order polynomials.
Since the operators A and J are very smoothing, it is easy to pick At sufficiently

small such that A(Ft-q)<O.le on the data set and J(t-q) is negligibly small at the
reconstruction point of interest.

For the numerical application of the method of least-squares to a related problem,
where q is assumed to be a/-periodic Nth order trigonometric sum over the interval of
interest instead of the approximation mentioned above, see Manselli and Miller [8] and
Murio [11 ].

In order to emphasize just the flexibility of making a complete discretization of the
problem, we may replace the L2-norm in the constraint set [-//2 + At/2, /2- At/2] by
the 12 or root mean square norm on a discrete set of L equally spaced points c, , cL,

with ca -/3/2 + At and cr =/3/2-At.
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Thus, any unknown function satisfying (3.1), (3.2) and (3.5) can be well approxi-
mated by some finite sum t] of the form (3.6), in the precise sense that

(i)
(ii)
(iii)
(iv)

(3.8)

Js-Jsq is negligibly small at the time of interest,

liP- AFtlIE-a/2,z/2 <---- 1.1e,
[--1312+Atl2,l/2--At/2] E,

F 0 on [-fl/2, 0].

In the following we are going to wipe out all distinctions in the notation between e

and 1. l e, t and q, and we will concentrate on solving the discretized problem.
Numerical method. Given a function q on I-ill2 + At/2, fl/2- At/2] of the form

L

(3.9) q(t)= Z ai(t)Ii(t),
j=l

satisfying

(.0

and

(3.11)

I[Aq -P[IE-/2.o/21--< e with P 0 on [-fl/2, 0]

llqll-/+,,/--,-,we wish to approximately determine the linear unctional Jq() at the point o
interest 0.

Combining the two constraints into one, and losing at most a factor of x/ in the
process, we have

(3.12) (q) []Aq -2 () [[/2+t/2,/2-t/2] 2

Our least-squares approximation is chosen to be that element q of the form (3.9)
(with coecient vector x) which minimizes

2

(313) (q) [[[Aq -2 () 2 }
Next, we write the quadratic unctional (q) in terms o the coecient vector

xofq.
Thus, the least-squares problem becomes

2

minimi  )lH - hll +(3.14)

where x is the N-dimensional partitioned vector with components

(3.s) x (, x,..., ?)*, i ,..., L, L x M,

h is the vector wi)h elements

(a.16) h,=g(d,)/, k-l,...,,

H is the K xN partitioned matrix with elements

(3.17) Hki=K-1/2( Oi(dk +//2--(j--1/2)At)--Oi(dk +//2--(j+1/2)At)),
\ i=1

k-l,2,...,K, I=I,2,"’,L.
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Here Oi(s, t) is the temperature response at the point s corresponding to a surface
flux (0, t).

The vector x minimizing (3.14) is the solution of the normal equations
2

/ I/x-
The desired linear functional can be wrtten as

1 . x[(+’+/2 e-(-’/*i(s) ds.(3.19) Jq() (P*q)()=== "-a,-/2

If we consider the N-dimensional partitioned vector with components

i, vi,’",v ]=1 L,

1 . (j+

I e-(e-s)2/2xIl’i(s) ds, 1, , M(3.21) v 8’ "(j--)At--/3/2

we have, using (3.15),
L M L

(3.22) Jq(:)= Z xv= E (x,
j= i=l j=l

or

(3.23) Zaq() (x, v).

From (3.18), it follows that

(3.24) Jaq($)= (Z-H*h, v)= (h, HZ-v)=-(h, V).

The vector V HZ-v can be computed and stored once and for all for the time :
of interest.

Therefore

K

(3.25) Jaq() , hkVk.
k=l

If our data F are measured at a whole long sequence of sample points with equal
spacing As /(k- 1), we can just translate our data set along the t-axis by the
multiples T. ] As, ] integer, and attempt to reconstruct our linear functional Jaq at the
new points using the previous weights given by (3.24), if and only if we are able to repeat
the conditions for the reconstruction at : 0, which requires that F be -0 for <= T.

This can actually be achieved if we subtract the influence upon the data of the last
reconstructed point. In doing so, we subtract the influence upon the data of the last Jaq
instead of q, but this is allowed since A is a smoothing operator and therefore the high
frequency components die out very fast in Aq.

Hence, our approximation at any desired point T is given by the very cheap and
simple discrete convolution against the data sequence, updated as mentioned,

(3.26) Jaq(T) , F(Ti + dk)
k=l

Beck’s method. In this section we would like to review a numerical method which
is commonly in use, due to J. V. Beck [1], [2], [12].

(3.20)

writing
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Assuming that the approximate solution has been computed for times t < T. and
that its influence upon the future data has been subtracted to give an adjusted future
data F, as described in the previous section, Beck then considers q(t) to be a low order
polynomial over a short portion of the future time record (several time steps in the
discretized data). One adjusts the coefficients in the polynomial expansion so that Aq
most nearly fits the adjusted future data F in the least-squares sense over this short
analysis interval. This solution is then taken as the accepted value of q(t) over the T/
single time step only. The analysis interval is then shifted one time step and the entire
process is repeated.

If q(t) is a piecewise constant function, and r future temperatures are considered
during the entire process, Beck’s method reduces to

M--1
-_ P+-4,-E= qM-(4 A4’ +’’" + 4’+ A4+)(3.27) qM vr+l 2 qO =- O.

z.,j=

Here

=(MAt), qM=q(O, (M-1/2) At), ki=ck(1, jAt), Acki=4i+:-cki.

The function b(x, t) is the temperature response at point x for a unit step rise for
the surface flux, i.e.,

(3.28) b(x, t) 2zr-/2t/2e-/4’-x eric ( t-/2)
with

(3.29) erfc (x) 2zr-1/2 e ds.

It has been shown in [1] that in order to have stability and at the same time a
relatively good resolution, the product rAt should be taken larger than a certain
minimum value and less than approximately 0.3. In this context, r 3 seems to allow the
maximum flexibility in the choice of the sample intervals At of interest, as determined in
[1] and by our own experimentation.

We notice that if q(t) is considered to be a piecewise constant function, the
unknown N-dimensional vector x for the mollified method becomes an L-dimensional
one, since from (3.15) N L M L x 1.

Also, (3.16) becomes

(3.30)

k=l,2,...,K,

and (3.21) is now

1
e -(-s)2/82 ds,(3.31) v

"(j--)At--/2

(3.32)

Hki K-X/2(ck(dk + /2-(i-1/2)At)-q(d + fl/2- (i + 1/2) At)),
1, 2," , L, 4 as in (3.28),

j=l, 2,...,L,

where is the normalized Gaussian distribution function and cr =//.
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4. Numerical results.
Direct kernels. Comparison with Beck’s method. In order to test the accuracy of our

method, we would like, first, to approximately reconstruct a delta function at time 0
in ux(O, t)= q(t), by solving the problem

ut u, O < x < o, > O,

u(1, t) F(t), data,
(4.1)

u,(0, t) 6o(t), unknown,

u(x, 0)=0, O=<x <.

We generate the exact data as the solution of the well-posed problem

ut Uxx, O < x < oO, > O,

(4.2) u,(0, t) 6o(t),

u(x, 0)=0, O<__x <z.

The solution u(x, t) is the kernel

(4.3) u(x, t) (Trt)-1/z e -xz/at

and, in particular,

(4.4) u(1, t) (t) (’rrt)-1/2 e -I/at.

Several numerical solutions of the problem (4.1), the direct kernels, have been
computed, using the MM method and Beck’s, for different values of the parameters
involved. The parameters have the following meaning:

/3: Length of data interval.
As: Step size sampling for data interval.
At: Step size for reconstruction set.
6" Radius of mollification.

The results are shown in Figs. 2, 3, 4 and 5.
In Table 1 the apparent "support" indicates the interval in which the absolute

value of the reconstructed function is greater than 10-2.
In all cases, the maximum value is attained at 0. Both methods conserve the

total integral extremely well since the kernel integrals are practically 1. We also observe
that while the direct kernels for the MM method are always positive and symmetric, the
direct kernels for Beck’s method are slightly nonsymmetric and become partially
negative as At decreases.

Inverse kernels. Comparison with Beck’s method. In order to investigate the
stability of our numerical method, we would like to know the amplification factor
associated with errors in the data when using the numerical procedures.

We notice that any piecewise constant data function can be expressed by a discrete
convolution against the numerical delta function N(t) defined by

-As <_- < 1/2As,1 if
(4.5) N(t)=

0 otherwise.

Moreover, if we know the solution for the numerical delta function in the data, our
inverse kernel, it follows by linearity that the total error in the solution can be obtained
as the discrete convolution of the data error against the inverse kernel.
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o 6 eo o’. oo o. eo o
TIME

FIG. 2. Direct kernels. Reconstructed flux q(t) corresponding to (t)= exact data.
MM" 8 4At 0.2 Beck" 2At 0.2.

TIME
0’. 20 "’". q0

FIG. 3. Direct kernels. Reconstructed flux q(t) corresponding to (t) exact data.
MM" 8 =4At=0.1; Beck: 2At 0.1.
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taD’-’
_J
LtJ
Z

-0.30 -b. s -b. oo o’. s o’. o
TIHE

FIG. 4. Direct kernels. Reconstructed flux q(t) corresponding to (t) exact data.
MM: 8 4At 0..05; Beck: 2At 0.05.

W

_I020 .60 0.00 0.60 1,20

TII4E

FIG. 5. Direct kernels. Reconstrlcted flux q(t) corresponding to (t) exact data.
MM: 8 4At 0.2, 0.1, 0.05.
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TABLE
For Figs. 2, 3, 4, 5

MM Beck MM

At
As
e/E

Max. Value
"Support"
Integral

2
0.05
At/2
0
4At
2.820

0.1

2.552

1
0.025
At/2
0
4At
5.641

0.05

5.897

MM

0.0125
At/2
0
4At

11.280

Beck

0.025

15.600
[-0.3, 0.31
0.9999

[-0.2, 0.6]
0.9999

[-o.5, o.5]
1.0000

[-0.12,0.3]
1.0000

(4.6)

If we solve the problem

Ut Uxx, O < X < X3, --CX3

u(1, t) N(t), data,

ux(O,t)=IK, unknown,

using the MM method and Beck’s, we find the inverse kernels shown in Figs. 6, 7 and 8
for different values of the parameters. The analysis o the inverse kernels show that the
amplification factor for Beck’s method is much larger than ours even though both
methods have almost equal resolution according with the direct kernels in Figs. 2,
3 and 4.

-.so o’.oo o’.so t’.oo
TIE

FtG. 6. Inverse kernels. Reconstructed flux q(t) corresponding to (t) discrete function.
MM: d =4At 0.2: Beck: 2At 0.2.
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O0 .50 0’. O0 0’. 50 O0
TIr4E

FIG. 7. Inverse kernels. Reconstructed flux q(t) corresponding to F(t) discrete 8 function.
MM: 8 =4At =0.1 Beck: 2At =0.1.

z

FIG. 8. Inverse kernels. Reconstructed flux q(t) corresponding to if(t) discrete function.
MM: 8 4At 0.05; Beck: 2At 0.05.
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MM

TABLE 2
For Figs. 6, 7, 8

/ 2
At 0.05
As At/2
e/E 0
8 4At

0.1

MM Beck

0.025
At/2
0
4At

0.05

MM Beck

1
0.0125 0.025
At
0
4At

The most important feature of the inverse kernels is the fact that they nearly have
compact support. This allows us to actually compute the solution by means of the
discrete convolution

(4.7) Jsq(t) (IK F)(t)

without needing the history of F for very long times either before or after the time t. The
inverse kernels are computed once and for all for fixed At at the points sj +./At,
] =0, 1,..., m, which include the "support" interval of IK. Then if we want to
reconstruct the functional Jsq at any time T At, integer, we read the data in the
interval IT,. S,, T +S] and merely use (4.7) in the form

(4.8) Jq(Ti) =At Z F(-j At)IK(j At).

More numerical results. The solution of the direct problem

Vt Vxx, 0<X<,
(4.9)

v(O,t)H(t),

the Heaviside function, as data, is given by

(4.10) v(x, t)= -x erfc t>0,

and, in particular,

(4.11) v(1, t)=e -effc t>O.

We would like to approximatelyreconstruct a step function in the flux u(O, t) q(t) for
e [.1 + t/2, .3 + g2], by solving the problem

(4.12) u(1, t)=F(t), data,

ux(O, t) H(t-(.1 + At/2))-H(t-(.3 + At/2)), unknown.

Of course, the exact data F(t) are obtained from (4.11); i.e.,

(4.13) F(t) v(1, t-(.1 + At/2))-v(1, t-(.3 + At/2)).

The solution of the problem (4.12) has been computed using both the MM with
At .0125, As At/2, fl 1, e/E 0, 4At, and Beck’s method with At 0.025 and
r 3. The results are shown in Fig. 9. Our method produces the nearly exact mollified
step function as desired. Beck’s method produces 10% overshoot at the leading edge.
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l

FIG. 9. Reconstructed flux q(t) corresponding to ’(t) exact data.
MM" 8 4At 0.05 Beck" 2At 0.05.

FIG. 10. Reconstructed flux q(t) corresponding to data with 1% random error.
MM" 8 4At 0.05.
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The solution of problem (4.12) has also been computed using the same parameters
but with a 1% random error added to the data; i.e.,

(4.14) P(t)=F(t)+.010 max IF(t)[,
where 0 is a random variable with values in [-1, 1], F(t) is given by (4.13) and
max IF(t)l 0.5. The MM produces an approximately 10% error as shown in Fig. 10.
Beck’s method, however, produces oscillations of the order +60. This huge
amplification of experimental errors is of course predictable because of the large
oscillations of the corresponding inverse kernel.
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ON TRACING AN IMPLICITLY DEFINED CURVE BY
QUASI-NEWTON STEPS AND CALCULATING BIFURCATION

BY LOCAL PERTURBATIONS*

KURT GEORGe

Abstract. An algorithm is presented which traces an implicitly defined curve (H(x)= 0 for H IN+I-->
IN). The Davidenko-IVP is integrated by a self-correcting predictor-corrector method which does not
evaluate the Jacobians of H explicitly. Instead, a quasi-Newton method of C. Broyden [Math. Comp., 19
(1965), pp. 577-593] is used in the corrector phase. It is then shown how the algorithm may be used to locate
bifurcation points and trace the bifurcating branches by introducing local perturbations of H in the sense of H.
Jiirgens, H. O. Peitgen, and D. Saupe [in Analysis and Computation of Fixed Points, S. M. Robinson, ed.,
Academic Press, New York]. Numerical results are reported on a difficult test problem and on the bifurcation
of periodic solutions of a differential delay equation.

Key words, curve tracing, homotopy method, continuation method, quasi-Newton update, bifurcation,
nonlinear algebraic systems

1. Introduction. Let us assume that H:RN+I--> RN is a (sufficiently) smooth map
and zero a regular value of H; i.e., the Jacobian H’(x) has rank N for H(x)= 0. By a
repeated application of the implicit function theorem it may be seen [29] that H-l(0)
consists of a disjoint union of simple smooth curves c(.)’->Rr/ each being
diffeomorphic either to the real line or to a circle.

One such curve, together with a specific parametrization, is singled out by the
following properties (C1)-(C4):
(C1)
(C2)
(C3)

(C4)

C(. is a solution curve; i.e., H(c(s)) 0, s .
An initial value has to be given, say c(0)= x.
Parametrization is possible according to arc length s; i.e. [6(s)]= 1 for s ,
where the dot stands for d/ds and[. ]indicates Euclidean norm in Rs/I.
An orientation must be given. An easy way to do so is via the determinant
condition on the augmented Jacobian,

[H’(c(s)))det\ 6(s)T
>0 fors.

Numerically tracing such curves has many important applications, such as the following.
Embedding or continuation methods. See for example the extensive bibliographies

in [2], [28], [37], [39], [44]. In these methods, one is merely interested in approximating
a point $ on the curve c(. which has a certain property, such as (0, , 0, 1) 1, and
the curve is only used as an aid for developing an approximation scheme. More
generally, one may be interested in finding a point $ on the curve which is a zero or a
local minimal point of a given functional on c(.). This includes turning points,
bifurcation points [24], [25], [38] and also the solving of ill-posed problems by the
method of regularization [31].

Nonlinear eigenvalue problems. A user is often interested in seeing the dependence
of a solution on some given parameter; e.g., one might be interested in approximating a
whole branch of solutions.
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Usually, the curve c(.) is numerically traced by integrating the so-called Davi-
denko-IVP [11], which is immediately obtained from (C1)-(C4) by differentiation:

(D) (s) t(s), s >-O, c(O) x,

where t(s) is uniquely defined by

and

H’(c(s))t(s)=O,

It(s)l-- 1

{H’(c(s)))det \ t(s) 7" > O.

Some authors [47]-[51] directly integrate (D) by some IVP-code, e.g., [41]. The
drawback to this approach, however, is that these methods are not self-correcting and,
once they get away from the curve, they may fail at points of high curvature or at
near-bifurcation points. These methods are, however, of interest in the context of
homotopy methods, since these methods permit restarting.

Probably C. Haselgrove [18] was the first to see that (D) can be integrated by a
predictor-corrector method which takes advantage of the fact that c(.) is defined
implicitly:
(PC1) Predictor step. Given some points Xl,’",x, on the curve, a new point y

further along the curve is predicted by extrapolation or by using the unit
tangents t(s) in (D).

(PC2) Corrector step. One chooses an additional functional 3’ RN+I R such that the
surface 3"-1(0) contains y and is "sufficiently transversal" to H-l(0). Then,
starting from the predicted point y, a Newton method is applied to find a
solution x,/l of H(x) 0, 3"(x) 0. Usually, the surface 3"-1(0) is taken to be a
hyperplane.

For extensive literature on these methods, see [2], [28], [37], [39]. Convergence
discussions are fairly classical and may be found in [24], [28], [39].

As is immediately seen, practically all computational expense is paid in the
corrector step (PC2). In some cases, e.g., when dealing with discretizations of certain
classes of differential equations, the explicit evaluation of the Jacobian H’ or a discrete
analogue may be comparable to the cost of a few evaluations of H. In most cases,
however, one would like to avoid the cost of explicit evaluations of Jacobians. One
immediately thinks of updating methods which, especially in higher dimensions, are
known to be more efficient than unimproved Newton methods [30]. When moving
rather slowly along the curve, the updated "Jacobian" in the last step will have the
additional advantage of already being a pretty good starting matrix for the next step,
and consequently a few corrector steps, each costing just one evaluation of H, will
produce a new point approximately on the curve.

Surprisingly enough, such updating methods do not seem to have been considered
very much in the context of curve tracing. In a somewhat different context, F. H. Branin
and K. S. Hoo [5] give updating methods some thought but report no numerical
experience and seem to have abandoned the idea. C. P. Schmidt [40] uses updating
methods for aproximately calculating the unit tangent t(s) in (D). Taking these
tangents, an IVP code is applied to integrate the Davidenko equation (D). The
numerical example considered in [40] is, however, too simple, and is not convincing that
this approach will also succeed in following curves with high curvature, turning points
and near-bifurcation points.



TRACING AN IMPLICITLY DEFINED CURVE 37

In fact, various numerical tests recently performed by the author seem to indicate
that updating methods provide no adequate tool for calculating the unit tangent in (D).
This may be the reason why updating methods have been given so little consideration in
the context of curve tracing. In the absence of an exact Jacobian in (D), it was found to
be much safer to approximate the unit tangent by a secant through the last two
calculated points.

In 2 a curve tracing algorithm in the spirit of (PC1)-(PC2) will be presented where
the corrector steps are performed by a quasi-Newton method of C. Broyden [6]. An
automatic step size control and further items on improving the algorithm will be
discussed. In 3 a rather detailed outline will be given of an algorithm which recently
has been used successfully by the author. We want to emphasize, however, that our
main objective is to show that the general procedure presented is rather successful, and
that much can still be done in orderto further improve the efficiency of the algorithm.. In
4 the performance of the algorithm on a rather difficult test problem is reported. In 5

it is shown how the algorithm can be used to locate bifurcation points and trace new
branches. This is done by "switching" local perturbations in the sense of H. J/irgens,
H. O. Peitgen and D. Saupe [20]. In 6 the performance of this technique on
bifurcation of periodic solutions of a differential delay equation is reported.

All numerical calculations were performed on a CDC CYBER 172 during a guest
visit of the author at Colorado State University.

2. An updating method. Let us begin now to outline a predictor-corrector method
in the sense of 1, (PC1)-(PC2) by incorporating updates for carrying along an
approximate Jacobian. In the next section a version of such an algorithm will be
described rather precisely, and occasionally we will refer to some statement numbers
there in order to make things clearer.

We want to trace a curve c (.) as defined in 1, (C1)-(C4) and assume that a starting
point x c(0) is somehow given. Without loss of generality, we trace the curve in the
positive direction, i.e., c (s) for s > 0. Hence, since our aim is to avoid calculations
of the Jacobian H’, we have to assume that a direction tl Rr+, Itll- 1 (l" [indicates
the Euclidean norm of RN/I) is given such that t(0)> 0. In fact, t is considered an
approximation (our best guess) of the unit tangent 6 (0). Furthermore, a matrix J1 of N
rows and N + 1 columns has to be given which represents an approximation of the
Jacobian H’(c(O)), though it turns out in practice that the approximation may be pretty
rough. Let us at least assume that the initial augmented "Jacobian,"

is nonsingular.
Given a step size rl > 0, we perform a predictor step

(PS) y Xl q-O’lt.

Next we introduce the hyperplane y-(O) through yl, orthogonal to h: yl(W)=
t(w- y), and consider quasi-Newton steps (corrector steps) on the map

Fl(W) \,yl(W)/’

starting at yl"

(cs) Yi+l Yi-MIFI(Yi), i=1,2,....
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The (N + 1)x (N + 1) matrices Mi are subsequently updated by C. Broyden’s [6]
"good" method:

[F(y,+)-F(y,)-M(y,+- y,)](y,+ y)r
(UD) M+I Mi + ly+- yl2

In actual programming, instead of (UD), the Sherman-Morrison [42] formula is used to
directly update B M-1 (see 3, step 12 below).

It is easily seen that all points yi obtained by the corrector step (CS) lie in the
hyperplane y- (0); consequently, the last row r ofM is never changed by the update
(UD) and the algorithm remains unchanged when the additional functional y in F1 is
replaced by zero as is done in 3.

The corrector steps are stopped when a given accuracy is reached, i.e., when
lYi+-Yi[ is smaller than a given tolerance. Then the last evaluated point X2-" Yi+I is
taken as a new direction t2 (x2-x)/Ix=-xl. This new direction replaces the old last
row of the matrix M, (cf. the update, 3, step (21)), and we go on with predictor and
corrector steps.

Before describing a version of this algorithm in more detail, let us discuss some of
its items and related problems.

Step size control. An efficient curve tracing algorithm has to provide an automatic
step size control (acceleration or deceleration) according to the curvature and other
information such as closeness to other parts of H-l(0). At the moment we are mainly
interested in the robustness of the algorithm and therefore offer a rather crude
acceleration-deceleration technique, which, however, turns out to work pretty well. If,
for various reasons, a predictor step with its subsequent corrector steps is not accepted,
we multiply the current step size tr by a deceleration factor/3, 0 </3 < 1, and try again; if
the predictor step with its subsequent corrector steps has been accepted such that a new
point approximately on the curve has been found, we multiply the current step length tr

by an acceleration factor a, c > 1. It turns out that under "normal" conditions a
deceleration costs only one evaluation of H, which is a reasonable price to pay.

Nonacceptance ol a predictor-corrector cycle. To make the algorithm robust and
adaptable also to very difficult problems (see the numerical example in 4), a list of
cases has been made under which a predictor step and its subsequent corrector steps are
not accepted and hence deceleration takes place. The cases are:

(a) A corrector step gets too large; i.e., ly+ y] is greater than a given tolerance
(see 3, step (6)). This is the deceleration which is "normally" observed, and which in
most cases costs just one function evaluation H as already mentioned.

(b) Too many corrector steps are needed (cf. 3, step (9)). This is a rather costly
way of decelerating, but will occur only if the conditions along the curve change
dramatically, provided the tolerance in (a) is set up in a reasonable way.

(c) The updated matrix becomes almost singular (cf. 3, steps (11), (20)). This
deceleration is very rare, and it simply prevents an unnecessary breaking down of the
algorithm.

(d) The updated matrices exhibit a change in sign of determinant (cf. 3, step (23)).
This indicates that the algorithm either jumped over a bifurcation point (see 5) or is
attempting to trace some other parts of H-(0) in the negative direction. At the
moment, we are not willing to accept such steps. In 5 we will modify this rule.

It should be noted here that the change of determinant of a rank one update is
easily calculated by the formula

(FD) P+ P + Puv T P(I + uvT)=)>det (P+) =det P.(1 + VTU).
This formula is used in 3, steps (10), (13) and (19), (22).
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Improvements. The algorithm described here is only a rather unsophisticated first
attempt, though quite successful. There are several items which may result in improving
its efficiency, i.e., decrease the number of function evaluations H needed to traverse a
certain part of the curve under the condition that the produced points lie within a certain
given tolerance on the curve.

A finer acceleration-deceleration technique may be used, which should, however,
possess the actual robustness achieved by the present technique. For example, as
numerical tests have indicated, it is of rather doubtful use to monitor the step size by
some ideal contraction factor or ideal number of iterations, since the updating process
may not be able to keep up with the speed of curve tracing (i.e., the step size). This
observation also makes it difficult to incorporate step size techniques in the sense of
H. J. Wacker [43], [45] or P. Deuflhard [15], especially in those cases where only a few
corrector steps are performed and consequently the updated Jacobian is a rather coarse
approximation to the "true" Jacobian.

A higher-order extrapolation may be performed in the predictor step. However,
one has to observe that a predicted point further away from the curve is no problem for
the quasi-Newton method (corrector step) as long as the intersection of the curve with
the current hyperplane singles out exactly one point near the predicted one. Hence,
higher-order extrapolation may offer less improvement than one expects at a first
glance (or indeed perhaps no improvement at all).

Instead of Broyden updates (UD) one may use a blending of Broyden updates and
secant methods as discussed by D. M. Gay and R. B. Schnabel [16]. Preliminary tests
indicate that some 10-20% function evaluations of H may be saved that way. More
generally, instead of Broyden updates, one may use some other least change secant
update in the sense of J. E. Dennis and R. B. Schnabel [14]. Thus, it would be possible to
save much computational expense in case of symmetry (e.g., if N coordinates ofH form
a gradient) or sparseness of H’ (e.g., if H corresponds to a discretization of a boundary
value problem).

One may be tempted to reduce the accuracy demanded for stopping the corrector
steps (cf. 3, step (7)) in order to save function evaluations. However, one should wait at
least until the quasi-Newton method shows good contractions in order to allow a
sufficiently updated "Jacobian," and from then on additional steps increase the
accuracy considerably. Hence one can afford to be rather generous here in terms of
approximating points on the curve quite precisely.

Convergence. As has already been done in the case of Newton steps [24], [28],
[39], it should be possible to prove the convergence of the present algorithm under
reasonable assumptions, i.e., to show that a finite part of the curve is approximated
within a given accuracy provided the maximal step size is small enough and the initial
data tl, J1 are sufficiently close to the unit tangent 6(0) and the Jacobian H(c(O)),
respectively, at the start. One may use here the existing proofs for the convergence of
quasi-Newton methods (see, e.g., [7], [8], [12], [13], [37]). Details are currently being
worked out and will be reported elsewhere.

3. Description of an algorithm for numerically tracing an implicitly defined curve.
Suppose that H" iN+--> RN is a sufficiently smooth map and zero a regular value of
H. Given an initial point x a RN+ such that H(x)=0, there is exactly one smooth
curve c(.)’R-->[N/ with the properties in 1, C1-C4. Our algorithm, sketched
in the sequel, traces this curve by sequentially generating points approximately on the
curve. The aim here is not to offer a perfect computer program but to point out the main
steps of the algorithm. The statements, numbered from (1) to (25), are written in the
mentality of programming languages. In particular, the equality sign does not indicate a
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mathematical equation. Hopefully, this makes the logic of the algorithm easier to
understand and also provides some first basis for a computer program.

Start. Before starting the algorithm one has to define some values for monitoring
it:

tr0 minimal step length along the curve (tr0 > 0)

troo maximal step length (tro< tro)

o minimal corrector step length (o > 0)

o maximal corrector step length (0 <

a acceleration factor (ce > 1)

/3 deceleration factor (0 </3 < 1)

noo maximal number of corrector steps

6o minimal factor for updating the determinant (80 > 0)

Finally, a map H" u/x u has to be given in the form of a subroutine. For technical
reasons we introduce the short notation

(H(.)) v+Ho(’)=
0

and e=(0,...,0,1)

Initial data. Some initial values have to be loaded.

x an initial point on the curve, i.e., x lV+a, H(x) O, c(O) x.
tA=predictor direction, i.e., tn+ ItAI 1 and tA not orthogonal to 6(0)

However, tA need not be a "good" approximation of +6(0).
A a nonsingular (N + 1) (N + 1) matrix such that the last row of A- coincides with

A. In case of difficulties, one may use an update in the sense of (21) below to
obtain this property. The inverse A- need not be a "good" approximation of the
augmented Jacobian

tar
a det (A-).
o" initial step length (o’0 < o" < cry).

We now list the steps of the algorithm.
Steps. The following PRINT statement is only included in order to make it clearer

when a step is completed and a new point on the curve approximated.
(1) Print x.

Predictor step.
(2) Let y x + rtA.

The integer n counts the number of corrector steps.
(3) Letn=l.

The next statement is introduced in order to indicate that A and tA should be saved in
case the predictor-corrector cycle is not accepted.

(4) Let B A and 6 tA.
Next, the corrector step is introduced. Since the last row of B-a coincides with tA, it is
easily seen that the corrected point z lies on the same hyperplane defined by tA as the
predicted point y; i.e., tA (Z- y)= 0.

(5) Let z y BHo(y).
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If the corrector step is too large, the predictor-corrector cycle is not accepted.
(6) If Iz- y I> oo go to (15).

If the corrector step is too small, we accept the result as a new point on the curve.
(7) If Iz Yl < 0 go to (18).

Otherwise, i.e., if Ko -< Iz- yl-<-, we continue with the corrector steps.
(8) Let n =n+l.

In case too many corrector steps are required, the predictor-corrector cycle is not
accepted.

(9) Ifn>noo go to (15).
We calculate the factor by which the determinant of B-1 is multiplied in an updating
step (see (13)).

(z -y)TB(Hoz -n0y)
(10) Let6F= Iz --Yla

If this factor is very small, the predictor-corrector cycle is not accepted.
(11) If < go to (15).

Otherwise, we update B by the values of H on y and z. Note that the old and the new
B- have the same last row t.

[B(Hoz Boy)- (z y)](z y)rB
(12) Let B B

(z y)rB(Hoz -Hoy)
If 6 is the old determinant of B-, the new one is obtained by

(13) Let 6 66F.
A new corrector step is performed by

(14) Lety=z and go to (5).
In case the predictor-corrector cycle is not accepted, we decelerate.

(15) Let r =/3or.
If the step size gets too small, the algorithm failed.

(16) If r <or0 then STOP "Step size too small".
Otherwise, we try the smaller predictor step.

(17) Go to (2).
Now we have the case that the last corrector step was so small that we would like to
accept z as a new point on the curve. However, some last tests are necessary. The new
predictor direction would be

ZX
(18) Let tn Iz-xl"

We calculate the factor by which the determinant of B-1 is multiplied in a last updating
(see (21) below).

(19) Let 6v tBe.
If this factor is very small, the predictor-corrector cycle is not accepted.

(20) If 16F[ < 60 go to (15).
Otherwise, we substitute the last row of B-a by tnr. This can be done by the following
update"

Be(BTtn -e)T
(21) Let B B tBe

If 6B is the old determinant of B-, the new one is obtained by
(22) Let ,SB 88F.
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One last test has to be performed. We started with a matrix A (det A- tA) and now
have a matrix B (det B- 6n). If the signs of 8A and 6n are different, this indicates that
the algorithm attempts to trace a part of H-a(0) in the negative direction (cf. 2, (d)).

(23) If AtB ( 0 go to (15).
Otherwise we accept z as a new point on the curve.

(24) LetA=B, x z, tA tn, 8A n.
Since the predictor-corrector cycle was successful, we try a bigger predictor step.

(25) Let cr min (try, a" tr) and go to (1).
Stopping criteria are provided according to the user’s preferences.

Remarks. As has already been pointed out, at the moment we are mainly
interested in the robustness of the algorithm. Hence, the step size control is essentially
given by tests to detect "dangerous" situations. Consequently, much can be done to
ensure a "faster" traversing of those parts of the curve which are "nice". Different
strategies and step size controls are presently being tested. Let us point out two
questions specifically.

(a) The choice of the acceleration-deceleration factors ct,/ is quite arbitrary and
has to be studied in more detail. Generally, it will depend also on the maximal number

2/4of corrector steps. In the example below we took c and/ 1/2, which just means
that 4 accelerations compensate one deceleration (halving). To increase the efficiency of
the algorithm, an update procedure for a and/ in the sense of P. Deuflhard [15] is
presently being tested, but satisfactory results are not yet available.

(b) Step (4) implies that two matrices are to be stored at all times, which seems to
be necessary for performing the special acceleration-deceleration tests given here. If
this turns out to induce severe storage requirements, these tests should be changed in
such a way that only one current approximation of the Jacobian is needed. A version of
such algorithm is presently being tested and seems to give satisfactory results.

4. A numerical example. Let us describe the performance of the above algorithm
on an extremely difficult numerical example which has been studied by L. T. Watson [2],
[49]. We identify r+ with l (x (y, A)) and consider the operator F"
defined by

(y)=exp cos k. Y’. r
i-----1

where Y=(n,"’, rr)r and F(.)=((.),...,4r(.))r. Since F is bounded, by
Brouwer’s theorem it is easily seen that F has a fixed point, but its approximation is
complicated due to the highly oscillatory nature of F. We refer in the following to the
case N 10.

The idea is to set up a homotopy H" Nv+--> Nv by H(x)=H(y, )= y-F(y),
and follow the curve in H-(0), beginning at x (y, A) 0, in the positive A-direction
until the level A 1 is hit.

The monitoring parameters (see 3, Start) were chosen in the following way:
tro= .0001, tr 1., 0 .00001, .1, a 2-, /3 .5, n 12, 0 .001. Initial
data" x 0, tA (0,""", 0, 1) 7, A Id, tr .1. The algorithm was stopped in case
Te x >1, i.e., A >1.

All points on the curve were approximated within an accuracy of about .00001
(i.e., x0 .00001), and the norm of H on these points never exceeded .00001.

To follow the whole curve, 5,936 function evaluations H were necessary. Table 1
shows some interesting points on the curve. The current arc length is used as a counter
to mark a point on the curve. The most frequent step sizes lay between. 1 and .2. If we
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TABLE

Arc length Step size Level

2.497466 .141421 .148741
3.277641 .025000 .170660
6.776182 .200000 .221610
6.942125 .001563 .203722
11.946218 .237841 .345137
12.180036 .014865 .337824
25.913004 .237841 .238765
25.982551 .000195 .231201
29.744268 .400000 .575842
31.557443 .059460 .536515
53.618232 .475683 .752125
56.175174 .084090 .841209
58.216670 .237841 .662295
58.590599 .000465 .610784
61.600321 .475683 .878493
62.621013 .070711 .834151
72.077008 .565685 .874211
72.540371 .070711 .848342
80.250663 .475683 .963553
80.398535 .141421 .959610
86.541966 .282843 .944249
86.584322 .042045 .947475
87.209329 .141421 .992502
87.377694 .168179 1.003455

take into consideration that a corrector step up to length .1 (K .1) was allowed and
that the total arc length was about 72, this gives some idea of the high curvature the
solution curve has practically everywhere. Most frequently, deceleration by corrector
step length occurred ( 3, step (6)). Only at very small step sizes ("danger") other
deceleration tests (e.g., 3, steps (9), (11), (20), (23)) became active. The smallest
observed step size was .000195 (at arc length 25.982551). Here, without the sign-of-
determinant test ( 3, step (23)), the algorithm would have jumped onto some other part
of H-l(0) and would have proceeded in the reverse direction. The largest step length,
.565685, was observed at arc length 72.077008.

We emphasize here that our aim was not to approximate a fixed point of F by a
minimal number of steps but to show that our algorithm was able to safely follow the
curve. L. T. Watson, using an IVP code as already mentioned above, does not follow the
whole curve but stops if the step size gets too small and restarts in x (y0, 0) with a new
homotopy H(y, A y AF(y (1 A )y0, where (y0, A 0) is the last approximated point
on the old curve. He thus was able to calculate a fixed point of F with 4,644 Jacobian
evaluations (see [2], [49]). A different approach is used by P. Brandenburg [4], applying
a numerically stable simplicial deformation algorithm, proposed by the author [17],
directly on the zero problem y -F(y)= 0. He uses 4,547 evaluations of H to approxi-
mate a fixed point of F very precisely. However, it should be mentioned that no curve
c(’) in the sense of 1:C1-C4 is followed.

Generally, it is not possible to confront the amount of computer work induced by
an evaluation of a Jacobian with the corresponding function evaluation (of H, in this
case), since this varies considerably. Nevertheless, it has become customary for test
problems to count one Jacobian evaluation as N (= dimension) function evaluations, if
no special structure (like sparseness) is taken into account.



44 KURT GEORG

5. Calculating bifurcation by local perturbations. Let us now show how the above
derivative-free algorithm may be used to calculate bifurcation points and additional
branches. The approach given here has been inspired by the use of Sard’s theorem in
[9], [27] and is a variant of one of the topological perturbation devices studied in [20]
(see also [33]).

Again, we consider a sufficiently smooth mapH u/ --> [u and a smooth solution
curve c :I-->[u/l parametrized, say, according to arc length; i.e., H(c(s))=O and
I (s)l- 1 for s . Suppose that every point x s H-a(0) is regular; i.e., the Jacobian
H’(x) has rank N, with the exception of one point: Co c(0). We consider again the
augmented Jacobian

[H’(c(s))M(s)=\ k(s)r ]

which consequently is singular only for s 0.
LEMMA 1. If det (M(s)) changes sign at s 0 then co is a bifurcation point.
This is a well-known result and may be proved by a degree argument; cf. P. H.

Rabinowitz [36]. It also could be deduced from our discussion below.
The case considered here is more general than the one considered by M. G.

Crandall and P. H. Rabinowitz [10], even if zero is a simple eigenvalue of M(0). In fact,
they impose an additional transversality condition in order to obtain a local para-
metrization of the bifurcating curve. A constructive analogue of their discussion has
been given by H. B. Keller [24], [25] (see also [22], [23], [26]), who indeed numerically
approximates the bifurcation point and the new branch. H. B. Keller uses, however, not
only the Jacobian H’ but even a higher derivative H". W. C. Rheinboldt [38], in a
related approach, avoids the computation of H" by using a singular chord method and
thus is able to switch to the new branch by just one evaluation of the Jacobian H’ and
several evaluations of H.

Our approach will be totally different. We will apply the above algorithm together
with a local perturbation to switch [20] to the new branch by using only a few
evaluations of H. Furthermore, we do not need a good approximation of the bifurcation
point. In fact, since our method is derivative-free, the only way to precisely approximate
the bifurcation point (if it is wished to do so) is by means of curve tracing. The basis of
our considerations is the following observation.

LEMNA 2. For a given open bounded neighborhood V of co (e.g., an open ball), let
r Nr/- N be a sufficiently smooth function such that (i) r(x)= 0 for x e! V and (ii)
(x) > 0 for x V. Then for almost all d Nr+ the map Ha" Nr+q, Nr, defined by
Ha (x) H(x) r(x)d, has zero as a regular value.

The proof is given by using a parametrized version of Sard’s theorem; cf. [1], [9].
For x e V, the Jacobian of He (x) with respect to x coincides with the Jacobian H’(x), and
hence has rank N provided that x eH (0). For x e V, the Jacobian of Ha(x) with
respect to d is a positive multiple of the identity map onI and hence again has rank N.
Thus the total derivative of the map (x, d) Ha(x) has rank N at all points (x, d) such
that Ha(x)= 0, and the conclusion follows from the above mentioned Sard’s theorem.

Now, note the fact that outside V the maps Ha and H coincide. If p" N- [r/ is a
zero-curve of Ha, due to the fact that zero is a regular value of Ha, the augmented
Jacobian

H’a (p(s))’
D(s)"

does not change sign of determinant. Hence, if a solution curve p(. of Ha, which in the
beginning coincides with c(.), is traced into V, then after leaving V the curve p(.)
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cannot coincide with c (.) anymore but must represent a new branch coming from the
bifurcation point.

It is now easy to sketch how our above algorithm should be applied to calculate a
new branch. Suppose one numerically traces a solution curve c (.) by generating points
X1, X2, Xk, Xk+l, approximately on c (.), and suppose that during the step
Xk Xk/ one encounters a change of sign in the determinants (see the test (23) in 3,
which in this case obviously should not be used as a deceleration test but rather as a
bifurcation indicator). One then may stop the algorithm, define the open ball V around
the center 1/2(Xk -[- Xk+ 1) with radius 1/2[Xk + Xk[ and perform a local perturbation Ha in the
sense of Lemma 2. Using this new map Ha and the negative last direction, i.e.,
--(Xk+l- Xk)/[Xk+I- Xk[, one now continues the algorithm with a smaller step size, say
1/4]Xk+x- Xk[, into V. After leaving V, the algorithm traces a new solution which has
branched off at a bifurcation point somewhere in V. We emphasize that this numerical
procedure is extremely simple and, as the example in 6 shows, uses only a few
evaluations of H or H.

It should be pointed out here that bifurcation points will indeed be detected
numerically even in our case, where instead of the exact Jacobian we are merely dealing
with approximate Jacobians given by means of Broyden updates. This is due to the fact
that we consider only bifurcation points characterized in a "stable" way by a change of
sign of the augmented Jacobian as described above. Clearly, the step size should be
"small" with respect to the curvature of c(s), and it has to be studied more precisely
what this means numerically.

Though the method sketched here permits that the change of sign is reflected in the
approximate augmented Jacobian only some steps later, numerical experience indi-
cates that the change-of-sign test (23) is very sensitive and usually gets activated imme-
diately after a bifurcation point of the above-mentioned type has been encountered.

If one wishes to approximate the bifurcation point more precisely (e.g., the
center (xg + Xg/l) is a very rough guess) one may stop again after leaving V, and
turn back, using now the unperturbed map H. One thus generates a sequence
1, 2, ’l, /+1, for which, somewhere in V, one again encounters a change of
sign of the determinants, say, during the step .1 --)’ ./+1. One then may interpolate the
points Xk-1, Xk, Xk/l (respectively, _1, , l/) by two polynomials p(t) (respectively,
/(’)) of degree 2 with coefficients in n+ and calculate a local minimum point of
(t, t’) Ip(t)-/(’)1. The interpolation and minimization costs just some vector additions
and multiplications and a few Newton iterations in i2. Certainly, if one wishes, it is
possible to use a more sophisticated curve-fitting procedure instead of the above rather
simple-minded interpolation of degree 2, which, however, in most cases will be
sufficiently accurate. Details will appear elsewhere.

Thus, the method of local perturbations together with our algorithm may be used
to trace solution curves, switch branches at bifurcation points and accurately approx-
imate a bifurcation point. The present method will be particularly efficient when
implemented as an interactive computer program, allowing a user to trace solution
branches according to the information he gets. Before we report in 6 in some detail on
a numerical example, let us illustrate the effect of local perturbation by two very simple
examples.

Example 1. Consider the map H" 2.. defined by H(x, y) xy. H-(0) consists
of the x- and y-axis, and 0 is a bifurcation point. If we define orientation by the
augmented Jacobian as indicated in 1, C4, we get a picture as illustrated in Fig. 1. Let
us now introduce a local perturbation Hal. In order to simplify the presentation, we do
not take a smooth perturbation; however, Hd may be regarded as a limit of such smooth
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perturbations.

xy
H(x, y)

xy + 1/2(1 x2
if x2+ y2_> 1,
if x 2 + y2 < 1,

where d e{+l, -1} is chosen. It is easily seen that the solution curves of Ha now have a
form as illustrated in Fig. 1.

H+t(O)

FIG.

Example 2. Consider the map H:2 defined by H(x, y)= xy3- yx 3. H-l(0)
consists of the four lines x 0, y 0, x y, x =-y, and the orientation is indicated in
Fig. 2. To avoid unnecessary calculations, since we are only interested in a qualitative
picture, we consider the following point-to-set map:

{xy3 yx3}
Ha (x, y) convex hull of {xy 3 yx 3, d}

for Ixl+lYl> 1,
for Ixl + lyl 1,
for Ixl+ly]< 1,

which may be regarded as an (appropriate) limit of smooth perturbations. ByH (0)
we mean {(x, y): 0 Ha(x, y)}. Fig. 2 illustrates these "perturbed" zero-sets.

6. A numerical example. As a numerical example, we consider a differential delay
equation. Our aim here is not to give a thorough numerical study of such equations but
merely to illustrate that the ideas of 5 can be successfully applied. Differential delay
equations, and in particular bifurcation of such equations, have been numerically
studied with great success by applying simplicial curve-tracing methods (see [19],
[20], [333).

Let us consider the following delay equation:

(E) x’(t) =-,f(x(t-1), where x is defined for =>0
and the equation is supposed to hold for > 1.

Given a continuous function x [0, 1] , equation (E) uniquely extends x to a function
x:[0, c) . We are interested here in periodic solutions, i.e., x(t)= x(t + to) for all

>_- 0 and some period to > 0. To simplify the discussion, let us make the following quite
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H:’(0),d>0

FIG. 2

strong assumptions on f:
Suppose that f" R R is continuous, odd (i.e., f(x) -f(-x), x ),(A)
differentiable at 0 with f’(0)= 1, and f(x)x > 0 for x 0.

Obviously, x(. )= 0 is a periodic solution of (E) for all h, the so-called line of trivial
solutions. It can be shown ([21], [32]) that at h r/2 a branch of nontrivial periodic
solutions bifurcates off the trivial line. Actually, given the oddness of f, one may restrict
one’s attention to higher symmetry solutions of period 4, which can be obtained by the
following simpler integral equation on C[0, 1]"

(I) x(t) + h | f(x(s)) ds O.

(See [3], [20] for more details.) In our numerical example, we took the nonlinearity

tan (x) for [x[ < 1,
f(x)-

tan (sign (x)) for Ix] _-> 1,

which causes bifurcation to the left (see [46]). We discretized x on 20 points and
integrated by Simpson’s rule, thus obtaining an approximation of (I) of the following
form:

(Z) H(x)=0, where H:212.
The eigenvalue parameter A is identified with the last coordinate of x.

We chose an open ball V with radius 1 around the bifurcation point Xo
(0,..., 0, zr/2) and considered the local perturbation

+=a fora->0,
(P) Ha(x) H(x) + 5[(1 -Ix Xo])+]2, where a [ 0 for a < 0,

which is not very smooth, but was sufficient for our purposes.
Phase I. We started the algorithm outside V on the trivial line to the left of zr/2

with local perturbation switched "on", ran through V and left on a nontrivial branch of
solutions, which we traced until
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Phase II. We then turned backwards with local perturbation switched "off," ran
through V, jumped over the bifurcation point (change in sign of determinant!) and kept
on until again

Phase III. We turned back again with local perturbation switched "on", ran
through V and ended on the trivial line, however, now to the right of A zr/2.

TABLE 2

Norm det nH V?

Phase Perturbation Switched"on"

.564542 .000000 1.00 no

.669299 .207494 .63 6 yes

.730894 .342399 4.56 5

.844784 .520616 4.73 4
1.059703 .734074 4.85 5
1.176255 .812746 4.68 8
1.370601 .900836 3.54 5
1.513161 1.185213 .98 9 no
1.497593 1.377060 1.52 8
1.477227 1.532187 1.27 5
1.443739 1.793451 1.58 5
1.386802 2.161622 1.87 4
1.286451 2.678963 2.54 5
1.112223 3.403504 3.65 6
1.126755 3.752345 3.08 7
1.209609 4.218078 4.34 6
1.348957 4.866837 4.45 5
1.550629 5.782416 4.64 5
1.765242 6.753571 4.50 4
1.987587 7.724993 4.38 5
2.209123 8.696390 4.42 4

etc.

Phase II Perturbation switched "off"

1.443111 1.797965 -1.42
1.542055 .799152 -.35 6 yes
1.564386 .203581 .20 7
1.555164 .537202 .44 5
1.527851 1.008033 .88 4 no

Phase III Perturbation switched"on"

1.415781 1.983624 -1.89
1.534186 .987081 -.91 6 yes
1.591989 .956899 -1.55 8
1.640919 .940542 -3.54 5
1.709551 .918142 -3.82 4
1.805648 .882667 -5.77 4
1.937740 .820506 -5.58 5
2.112331 .704692 -5.95 5
2.321663 .484422 -5.05 5
2.516619 .087802 -1.72 10
2.786151 .000002 -2.15 12 no
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In Table 2 we show the more interesting steps of the algorithm in the three phases.
The numerical effort to generate a new point is represented by the number nH of
evaluations of H or Ha, each nH corresponding approximately to .035 CPU-seconds.
The points on the curve were approximated within an accuracy of .00001 (Euclidean
norm), and the norm of H on these points never exceeded .00001. The norm in Table 2
is taken over the first 20 coordinates of x (Euclidean norm), i.e., without A.

Acknowledgment. I am very grateful to Eugene L. Allgower for numerous
discussions.
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ON THE USE OF SPARSE MATRIX APPROXIMATION TO THE
JACOBIAN IN INTEGRATING LARGE SETS OF ORDINARY

DIFFERENTIAL EQUATIONS*

M. B. CARVER" AND S. R. MACEWEN’t

Abstract. It is well known that large sets of coupled ordinary differential equations are difficult to
integrate efficiently. The "stiffness" of the equations, arising from the wide range of embedded time
constants, necessitates that implicit integration techniques be used. These normally require some form of
algebraic equation solution involving the Jacobian matrix, a necessary operation which becomes increasingly
expensive with the size of the equation set.

Efforts to partition large equation sets into linear and nonlinear or stiff and nonstiff subsets have proved
fruitful, but are difficult to implement in a general manner, as such a division cannot always be found.

In the integration algorithm due to Gear, the implicit requirement is handled in an approximate manner
by using a predictor-corrector iteration, again involving the Jacobian. The expediency of this operation is
greatly enhanced by using sparse matrix techniques, but the operation remains relatively expensive for large
sets. This paper illustrates that the approximation to the Jacobian matrix may be automatically adjusted to
reduce the degree of coupling, and partition the predictor-corrector iteration into implicit and explicit
segments. This further reduces the magnitude of the matrix operation without detracting from the accuracy of
the integration.

Key Words. sparse matrix, Jacobian, differential equations, integration

1. Introduction. Numerical algorithms designed to efficiently integrate stiff
ordinary differential equation sets use implicit techniques which normally require some
form of linear equation solution involving the Jacobian matrix. The fact that this
operation can be expensive has long been recognized. Gear [1] handled the implicit
requirement by using recent approximations to the Jacobian in the predictor-corrector,
and Hindmarsh further developed this theme by providing a series of codes [2]
containing alternative means of expressing the Jacobian. These were particularly
effective for the banded Jacobians which frequently arise in the solution of one-
dimensional partial differential equations by the method of lines. Large equation
systems arising from practical applications frequently do not yield banded Jacobians,
but invariably the Jacobian is sparse. Sparse matrix techniques have been used with
routines based on the Gear algorithm by Curtis [3], Carver [4] and Hindmarsh [5], [6].
Apart from the obvious storage and speed advantages inherent in sparse matrix
techniques, quite a startling increase in efficiency is obtained in automatically optimiz-
ing the numerical evaluation of the Jacobian. In solving large problems in mass action
chemical kinetics, Carver [7] has shown sparse matrix techniques more efficient for any
set larger than 25 ordinary differential equations. Jacobian matrices associated with the
ordinary differential equations arising from these kinetics problems are sparse and
exhibit no fixed structure. By contrast, those arising from partial differential equations,
particularly single equations in one dimension, are banded in structure and are best
handled using a banded matrix algorithm. However, coupled partial differential equa-
tions, or sets of partial differential equations coupled with ordinary differential equa-
tions, such as those arising in neutron kinetics, generate a more complex Jacobian,
which is striped rather than banded and may include randomly distributed elements
which must be included implicitly in the predictorocorrector iteration [4]. This can be
done efficiently only by using sparse matrix techniques for the Jacobian.

* Received by the editors April 4, 1980.
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On integrating coupled two-dimensional partial differential equations, one finds
the matrix problem even more severe, as the number of nonzero entries per variable is
considerably greater than in one-dimensional cases and the structure is not simply
banded. This, together with the fact that two-dimensional cases invariably require a
large number of grid points, makes the matrix problem so severe that standard fully
implicit techniques are impossible, and become at best impractical even when sparse
matrices are introduced.

In previous work, success in such large problems has been gleaned by using
partially implicit techniques which partition the equations in such a manner that all are
not included in implicit form, thus reducing the magnitude of the matrix operation this
requires. A number of methods of so dividing the equation set have been investigated.

Partitioning the equations into slow response and fast response sets has been
considered by Blum [8], who proposes integrating the slow response sets by a simple
explicit method while integrating the fast response or stiff sets by implicit methods.
Porsching et al. [9] have applied a similar rationale to analytically partition the
conservation equations. Palusinski and Wait [10] note further that if the stiff set
also happens to be linear, as is often the case, impressive increases in efficiency are
possible. Hofer 11 ] presents a formal evaluation of partitioning, and also shows it to be
very effective for cases in which the fast decaying components originate from only a few
easily identified equations. In all such cases, communication between slow and fast
response sets must be established correctly by means of suitable interpolants; the
method proposed below eliminates the need for interpolants.

All of the above techniques deal strictly with ordinary differential equations, and
assume that the user will be able to identify the relevant partition a priori and write the
equations separately. If the ordinary differential equations are generated from coupled
partial differential equations, no suitable partition is evident, and in fact normally
none can be made. It is, however, fruitful to envisage a partition, not with reference to
particular equations, but with reference to particular terms in the equations and the
relative influence of such terms on the Jacobian matrix. Thus by removing from the
implicit formulation any terms which do not significantly influence convergence, one
reduces the degree of implicit coupling and eventually partitions the predictor-cor-
rector into implicit and explicit segments. In a recent paper, Enright and Kamel [12]
also investigate this approach. They propose a method which automatically introduces
such a partition during a similarity transform and also permits a fast update of the
iteration matrix. Their tests of the method show the partitioning to be most effective at
stringent tolerances. The method is restricted to full matrices.

In the following sections, it is shown that the iteration matrix can be automatically
partitioned by using only slight modifications to standard sparse matrix techniques. The
criteria used to accomplish this are discussed, and selected examples are given.

2. The philosophy of sparse matrix Jacobian approximations.
Background. The algorithm first published by Gear [1], and later expanded by

Hindmarsh [2], [5], [6] and others [3], [4], has become one of the most popular
integration techniques used in numerical analysis of ODE’s and PDE’s. Its success is
due primarily to the efficiency it derives from minimizing the amount of matrix
manipulation necessary to effect an implicit solution, and also to efficient selection of
optimal integration step size.

The formulae used to integrate the ODE initial value problem,

() : =/(y), y(0) Y0,
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are linear methods of the form

k k2
(2) Y, Z aiY-i+ h Z fliY,-i,

j=l j=O

where the vector y approximates y(t), 3 f(y, t) approximates 3(t), h t/-t, and
a and/3 are coefficients. For Adams methods of order q, k 1 and k2 =q-1; for
backward differentiation formulae k =q, k2=0; but in either case /300, so the
formula is implicit.

Equation (2) may be written

k k

(3) g(y,) y, h/3of(y,)- Y. aiy,,- . i",,-i O.
j=l j=l

This nonlinear equation may be solved by Newton iteration. For iteration m + 1,

Ynm+l Ynm-P-mg(Ynm),(4)

where

[(5) P.() I- ho Of Of
Yn(m) Yn(m) Yn

As this is an iteration rather than an exact solution, replacing P,(,) by P,(0) avoids the
necessity of repeating matrix calculations during the iteration at a very slight loss in the
rate of convergence. In practice, further savings, again at a slight loss in convergence
rate, are obtained by using P,, instead of P,, where P,, is the matrix computed at some
previous n’< n. Thus P, would have to be computed only when P,, fails to produce
rapid convergence. The loss of convergence due to the approximation is of course
problem dependent. Although in theory the quadratically convergent iteration is
reduced by such approximation to a linear convergent iteration, in practice the
associated penalty is frequently acceptably small.

Although these approximations reduce the number of matrix manipulations, the
evaluation of the matrix P, and subsequent LU decomposition required for repeated
application, must still be completed a fairly large number of times during a typical
integration. The efficiency of the algorithm therefore depends heavily on the expe-
diency with which these operations are carried out. Recognizing this, Hindmarsh [2]
provided a number of alternative versions of the GEAR code. Collectively, they
contain several options for treating the matrix P as a full matrix, a banded matrix or a
diagonally dominant matrix, and also provide a functional iteration option in which the
Jacobian is not used at all and P reduces to I. For the particular matrices addressed,
these options are of course exact. However, for the general case, in which systems are
not truly banded, the above options may still be used successfully, but each may be
regarded as a successively weaker approximation, and thus requires successively
smaller step sizes to attain convergence. On the other hand, if the equation set is large,
storing and handling the P, matrix as a sparse matrix considerably reduces matrix
manipulation cost while retaining the same convergence rate as the full matrix solution
[4].

Integration using sparse techniques. The principles of sparse approximation to
be discussed apply in general to any suitable combination of integration and sparse
matrix modules. The GEARZ integrator was used for this particular study. This
package uses the sparse matrix routines of Curtis and Reid [13] within a framework
based on a combination of the Hindmarsh packages GEAR and GEARB [2]. GEARZ
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is documented elsewhere [4], and its performance has been compared extensively to
other state of the art packages [14].

The sparse matrix handling of the linear equation problem of (5) consists of six
distinct stages. In the first, the structure of the Jacobian is assessed to determine the
position of nonzero entries. In the second, the sequence of perturbing the yj is optimized
as discussed below to minimize the number of function evaluation calls required to
obtain all the numeric values of the elements Jij. The evaluation calls are made, and then
the analyze stage determines a suitable pivot strategy for the Gaussian elimination. The
operate stage performs the LU decomposition, and finally the solve stage does the back
substitution to complete the equation solution. In the full matrix mode only three stages
are required: evaluation, decomposition and solution. The advantage of using Pn’
instead of Pn lies in the fact that only the solution stage is required while P,, is in use.
Sparse matrix analysis retains this advantage, and for a given structure the structure
assessment, sequence optimization and analyze stages are also required only once. This
introduces an additional degree of freedom in the protocol; that is at what point the
structure of the matrix should be reassessed. As it is expensive, this operation is used as
a last line of defence in the decision hierarchy. In the event that certain Jacobian
elements are initially zero but become significant during the evolution of the integra-
tion, structure must be assessed once initially, again after the first few steps and then
periodically during the integration. As equation systems may in fact have fixed Jacobian
structure, the frequene.y of evaluation is placed under user control. Thus in sparse
matrix mode Pn, in (5) is replaced by P,,,, where n" indicates that Pn,, is evaluated at
t,-< t using the sparsity structure found at tn,, <-t,.

A further advantage of using sparse or banded matrix techniques is that the
numerical evaluation of the Jacobian may be optimized. The normal method of
evaluating a Jacobian numerically is to perturb one of the dependent variables yi and to
evaluate Jii Afi/Ay for all i. The procedure is carried out for each of the m variables ,
and requires m calls to the function evaluation routine. If the system is tridiagonal,
every third yi may be perturbed simultaneously, as each Yi affects only/1. Thus the
Jacobian for a tridiagonal system may be evaluated with only three function evaluation
calls. Similar savings may be realized in any system in which the structure is known, and
in particular by examining the structure of the sparse matrix [13]. In the neutron
kinetics example discussed below, the Jacobian of a 242-equation system is evaluated
automatically by only seven function evaluation calls. The economics introduced by this
approach to Jacobian evaluation is particularly important in view of the fact that it is
rarely possible to express the Jacobian of a large system in an analytical manner.

Sparse approximation. The above section outlines the advantages of using sparse
matrix techniques to evaluate an arbitrarily structured Jacobian and perform the linear
equation solution (4) with the most accuracy possible, thereby allowing the integration
to proceed with maximum step size. We now address the problem of large equation sets.
In particular, the ordinary differential equations arising from the method of lines
solution of coupled two-dimensional partial differential equations give rise to matrices
which are sparse but have a fairly large number of nonzero elements. The matrix
problem again becomes severe even when the sparse matrix approach is used. Typically
a significant amount of time is required to perform each matrix operation, and the
storage required to hold the decomposed matrix is high, possibly even exceeding
available core.

This fact means that the criterion for integrating efficiently may become inverted.
That is, although normally to integrate a small system of equations it is advisable to use a
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new matrix evaluation to accelerate step size, for a large system it may be more suitable
to reduce the frequency and the accuracy of the matrix operation at the expense of a
reasonable decrease in step size.

This situation gives rise to a number of possibilities.
(1) Automatic partitioning. In order to reduce the size of the matrix problem, the

approximation to Pn in (5) is carried one further step, again at the possible loss of
convergence rate. P,,,, is replaced by/n,,, where/n,, is an approximation obtained by
selecting only terms which exert strong influence on the Jacobian coupling. This is
readily accomplished by including those terms Jij Afi/AYj which satisfy

e *(Ifi[ / Ifi / Afil)
(6) I r"l> 2

In normal sparse matrix analyses of the Jacobian, the parameter e is set to a number
which merely distinguishes a nonzero element from effective numeric zero, but if larger
values of e are used, terms representing weak coupling will also be omitted from the
structure. This has the effect of rendering the predictor-corrector iteration partially
explicit instead of fully implicit, as the weakly coupled terms will be handled by
functional iteration instead of Newton iteration. Although the level of partition is
selected heuristically by increasing e, the resulting partition is not arbitrary but closely
reflects the relative strength of particular coupling terms and is readily related to the
physics of the problem.

(2) Sparsity control. During the decomposition of a sparse matrix, a certain
amount of "fill-in" or sparsity loss is inevitable, and the decomposed matrix requires
more space than the original Jacobian. To a certain extent, the sparsity loss can be
controlled by pivot strategy,.and by introducing a "drop tolerance" which omits all fill-in
elements below the specified magnitude. Again, the effects of this omission are problem
dependent. Often the penalty in accuracy is acceptable, and in the present application it
is advisable to minimize sparsity loss, provided this only marginally degrades step size,
as storage and manipulation speed are considerably affected.

(3) Step size and order changes. For small equation sets, the strategy is to choose
order to maximize step size without considering whether this will require matrix
evaluation. With a large system, it is advisable to permit the computation to continue
with current status unless a considerably larger possible step is permitted. Furthermore,
when a step size increase is made, it is not inevitably necessary to immediately
reevaluate the Jacobian, unless convergence fails. It is much cheaper to let convergence
failure dictate the necessity of reevaluating the Jacobian than to risk unnecessary
evaluation. Fixed leading coefficient formulae, in which P remains unchanged through a
change in the order [15], could be advantageous here.

(4) Sparsity structure evaluation.When an approximation a6,,, to the sparse matrix is
used it becomes more likely that the structure of significant elements may change, so
this possibility must be addressed. In the event that the density increases during
computation, the possibility also arises that in a large system the storage required for
manipulation of the new matrix will exceed that available. In such cases it is necessary to
freeze the matrix structure and forbid further structure assessment. This may of course
degrade convergence and step size, but permits the computation to continue. While
heuristic criteria can be introduced to govern the logic of the above decisions, it is
apparent that they will not be universally applicable, as the relative expense of function
evaluations and matrix operations will differ from case to case. Thus the governing
parameters should be made accessible for possible user control.
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The effects of these parameters are illustrated in the examples which follow. The
numerical results shown are of course specific to GEARZ, but similar trends could be
expected in integrators of like generic origin. A number of improved sparse matrix
routines have evolved since the introduction of MA18. We would expect the advan-
tages offered by sparse approximation using these routines would be at least com-
mensurate with those discussed. More recent routines, for example, allow better control
of sparsity loss. In particular, the successor to MA18, MA28, offers faster, more
accurate operation at the expense of slightly more indexing overhead [16]. The
priorities of the current study, however, dictate the sacrifice of some speed to save
storage.

Neutron kinetics benchmark. The first example of automatic sparse partitioning
involves the equations describing the evolution in time and space of neutron popu-
lations at various energies in a reactor submitted to perturbation If Cg(x, t) is the
neutron flux for energy group g, CI is the delayed neutron precursor density for delayed
group l, Sg is a neutron source, Tr(x, t) and Tc (x, t) are fuel and coolant temperatures,
and the remaining functions describe space-dependent reactor properties, then these
equations may be written for a total of G and L groups as

(3 L

(7) O___g= agV. (dgVCg)- bgCg + Y’. C,,+ E etgCt + Sg, g 1, G,
Ot g’=l /=1

dC/
(8) E GtCg-qtCl, l= 1, L,

dt g=

G

(9) OTr= -utTt + vtT + Z wtgg,
Ot g=l

OT OT(0) =-uT+vTt+ Z w,-&.Ot g=l Ox

If N spatial points are chosen, these generate (2 + G +L)N coupled linear ordinary
differential equations. Here we illustrate the solution of ANS benchmark problem
ID6-A2. In this benchmark, boundary values of the flux are zero, Cg(x, 0) bgo(X) and
the values of all necessary coefficients are given in full detail in reference [17], which
also gives a number of independent solutions. The benchmark uses two energy groups,
six delayed groups and 1.21 points, but omits the temperature equations, thus generat-
ing 968 ordinary differential equations. These may be solved by traditional partitioning;
the 242 equations for the two fast flux groups are integrated by the GEARZ algorithm,
and the 726 equations describing the slower delayed neutron groups are solved by
synchronized Euler integration. The resulting Jacobian matrix (Fig. 1) has a form
suggesting block iterative solution, but 242 equations are readily handled as a sparse
matrix and all Jacobian elements may be evaluated using only seven calls to the function
defining the equations. From the computing statistics shown for this problem in Table 1,
it is obvious that the standard sparse matrix techniques are the only practical means of
completing the required integration; they achieve the same step size as the full matrix
method, but use orders of magnitude fewer function evaluations to complete the
required 4 seconds problem time. In this case, note that the use of the banded and
diagonal options can be regarded as successively weaker approximations to the true
Jacobian, and perform accordingly.



SPARSE MATRIX APPROXIMATION TO THE JACOBIAN 57

Terms
C T T

FIG. 1. Structure ofJacobian matrix, neutron kinetics example.

TABLE
Performance of GEARZ algorithm with neutron kinetics equations.

Problem Functional .Diagonal Banded Full
time Method iteration approx. (triagonal) matrix

Sparse
matrix

10-5 NF 390 664 2239 2239
NS 164 149 41 41
CP 5 10 17 35
H 10-7 10-7 10-6 10-6

10-3 NF ---3000 12884 6248 4478
NS ---3000 1725 112 91
CP --400 152 43 73
H 10-7 10-6 10-5 10-4

10-1 NF 42118 6295
NS 369 153
CP 271 143
H 10-5 .004
NF 17302
NS 211
CP 375
H .05

4 NF
his
CP

357
41
9

10-6

472
91
12
10-4

587
153
16

.004
994
211
33
.05

1744
260
50
.2

Required: to complete the given problem times with 0.01% relative imposed tolerance.
NF Number of function calls. CP Computing time on CDC CYBER 175.
NS Number of line steps. H Time step at given problem time.

Incomplete after 300 CP seconds computing time.
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The results of secondary partitioning are given in Table 2. Here, in addition to the
above primary partition by equations, the PDE block is further partitioned into
partially implicit form by use of the significance or sparse partitioning parameter e in
(6). Note that in this case the equation set has already been partitioned once, and only a

TABLE 2

Effect of sparse-partitioning parameters on integration performance, neutron kinetics example.

Problem
time

No. of Decomposed
entries in matrix Jacobian Function Integration CP

Method Jacobian size evaluations calls steps time

e 10-14 953 1188 9 357 41 8
10-13 844 1025 95 1354 72 36
10-12 710 943 131 2554 15 41
10-1 670 737 138 2230 38 33
10-8 242 242 142 2086 64 32
Functional

Iteration 142 390 164 5
Diagonal 242 242 140 664 149 3
Full 2422 2422 9 2239 41 26

10-3 e<10-14

10-13

10-12

Functional
Iteration

Diagonal
Full

953 1188 18 472 92 12
796 969 151 863 223 100

1040 12884 1725 65
18 4478 92 91

e -<_ 10-1’ 953 1188
Diagonal
Full

91 1744 260 50

Indicates this option was not completed as it consumed excessive time.

few further terms may be rendered explicit before the efficiency of integration begins to
deterioriate markedly. The increase of e from 10-15 to 10-14 reduces the number of
Jacobian entries from 953 to 844. The integration then requires about twice as many
steps but uses approximately the same computing time as a full matrix solution. When
the e parameter is made large enough, the Jacobian matrix is neglected, the P matrix
reduces to the identity matrix and the predictor-corrector is reduced entirely to
functional iteration. There is of course a considerable amount of effort wasted in
generating the identity matrix in this manner. The simple functional iteration option
proceeds much faster and is more efficient for all values above some large value of e.

However, the results are the same in each case, confirming that the sparse approxima-
tion does reduce to functional iteration in the limit. This fact, that sparse approximation
returns the correct results even in this severe limiting case, permits the method to be
used with confidence for truly large systems of equations which cannot be partitioned a

priori on physical grounds. In some cases it is not only impossible to provide enough
storage for the full matrix inversion, but there is also insufficient storage for an accurate
sparse matrix inversion. In such cases it may be possible to obtain a reasonably efficient
solution byincreasing the sparse partition parameter e until the storage required tor the
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sparse matrix operations will fit into available core. This procedure can of course be
automated. The second example involves such a case.

Point tleteet kiaeties example. The irradiation of a crystalline solid by energetic
particles, such as electrons or neutrons, results in the production o vacancy and
interstitial point defects. The coupled partial differential equations which define the
production, mutual recombination and loss to internal surfaces of each type of point
defect are given by

OCi { Ci }(11) c]----= Pi-RCoCi +DiV VCi +-VEi
(12) O--=P-RCG+D VC+ VE.

In (11) and (12), P, C and D, P, C andD are the production rate, concentration and
diffusion coefficient for interstitials and vacancies respectively; R is the recombination
rate constant; k is Boltzman’s constant and T is the absolute temperature. Typically,
P P, and D is about six orders of magnitude less than D. E and E define the
interaction between interstitials and vacancies respectively and the sinks to which they
migrate. The nature of the sinks is defined by the choice of region in which (11) and (12)
are to be solved, and by the boundary conditions imposed on the surfaces of that region.
Specific forms of E appropriate for polar coordinates have been given by Wolfer and
Ashkin [18]. For the simplest case of misfit interaction only, E is of the form

(13)

(14)

with B >> Bo.

Bo sin 0

Bi sin 0

The study currently underway involves solving (11) and (12) in polar coordinates
for a variety of asymmetric boundary formulations. Here, however, we consider only
the simple case of concentric circles with Co and Ci specified on each. The values of the
constants used for the example are given in Table 3.

The precise solution of the point defect kinetics equations (11) and (12) depends on
the choice of grid resolution, and on the method used to approximate the spatial

TABLE 3
Input constants (point defect kinetics).

Parameter Vacancy Interstitial

P x 10-7 at.fr./s x 10-7 at.fr./s
D 4.69 x 10-11 cm2/s 1.08 x 10-4 cm2/s
R 2.64 x 103 -1 2.64 x 103 s-1

B/kT 0.0 5.48 x 10-7 dyne-cm2

rt (inner boundary) 1.4 x 10-7 cm 1.4 x 10-7 cm

ro (outer boundary) 4.2 x 10-5 cm 4.2 x 10-5 cm

Co 3.78 x 10-1 8.79 10-27

The boundary conditions are defined at r rt and to, for each point defect,
by the expression C Co exp (-B sin O/r).
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derivatives. To obtain an accurate solution a refined treatment of differentiation along
the radial direction is required. This solution is the subject of a further publication [19].
However, as the differentiation method does not detract from the efficiency of sparse
matrix partitioning techniques, we here use a simple exploratory example to illustrate
the technique, employing a simple equally divided 10 x 10 grid with standard fourth-
order differentiation formulae in the radial direction and second-order in the azimuthal.
With Ei and Eo defined by (13), (14) and Table 3, the equations may be written as

c3--- Pi RCCi + Ui r2 + Ui --r \-+- Or I
(15)

Di c3Ei OCi Di 02Ci+
r2

,
kTr O0 O0 O0

(16)
Ot

Po RCoCi + Do 02C Do+
r2

Since Ei defined by (14) is harmonic, boundary conditions are applied only in the
r-direction, reducing the number of active differential equations to 160. The Jacobian
has the structure shown in Fig. 2 with eight nonzero entries per row; thus the total
number of nonzero entries is 1280. Successively increasing the e parameter in (6)

Ci

Cr

Ci Cr

THE BANDS REPRESENT NON-ZERO TERMS.

THE MATRIX IS TRIDIAGONAL IN O. FIVE DIAGONAL IN
FOR EACH OF Ci AND Cr. AND CONTAINS ONE COUPLING TERM.

FIG. 2. Structure ofJacobian matrix, point defect kinetics equations.

reduces the number of entries by eliminating the weaker coupling elements from the
Jacobian as shown in Table 4. The effect of such elimination is summarized in Table 5.
The integration is required to complete in 10 seconds problem time. Note that a
solution incorporating all the Jacobian elements consumes a considerable amount of
time in matrix manipulation. This time is reduced considerably by eliminating weak
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TABLE 4
Effect of sparse matrix partitioning parameter on Jacobian structure example, point de]’ect kinetics

No. of No. of entries Co equation
entries in in decomposed coupling included
Jacobian matrix 0 Diag. Ci

Ci equation
coupling included

0 Diag.

<10.6 1280 4920 4 2 4 2
10-5 1120 4222 2 2 4 2
10-4 880 2120 2 0 4 2
10-3tO 720 1572 0 0 0 4 2
10 540 1270 0 0 0 2 2
102 400 458 0 0 1 0 2 0 1
103 200 200 0 0 1 0 0 0 1 0

coupling terms, and the Jacobian involving Co can be reduced entirely to functional
iteration form without degrading convergence and attainable step size. Thus the
equations have been partitioned, in that the Co equation has been rendered explicit in
the predictor-corrector. The Ci equation remains very stiff, and any attempt to
eliminate further terms degrades convergence considerably. As even the cross coupling
term RCoCi is eliminated from the Jacobian, it would appear that in the absence of this
term, the C solved alone would be stiff and the Co equation solved alone would not be
stiff. This indeed turns out to be so, but particularly in the presence of the coupling term,
this partition is not self-evident.

Note that the range 10-3<= e -<_ 1 reduces the Co equation to functional iteration,
and any e < 1 removes terms from the C Jacobian. A value of e 103 initially reduces
the C equation to functional iteration. Note that this value requires the same number of
function evaluations as the standard functional iteration option for problem time
<= 10-5, but as the computation progresses more Jacobian terms become significant.

e 103 admits these terms into the calculation and finishes the entire computation in
reasonable time, whereas the functional iteration option does not. Finally, the table
shows that reducing the number of entries in the Jacobian also reduces the size of the
decomposed matrix by more than a proportionate amount. The latter matrix is the one
which limits the calculation as it is always the larger, so the reduction of fill-in is a
considerable saving.

A sufficiently accurate representation in space requires 480 grid points and special
differentiating techniques [19]. Similar savings are made in this case, in fact sparse
partitioning is essential, as without some elimination the matrix manipulation
requirements exceed the 98K core available in the CDC 175 computer.

Some further advantages of sparse partitioning. Apart from the obvious advan-
tage that sparse partitioning reduces matrix storage and manipulation time in such a
way that hitherto unsolved problems become more tractable, several further advan-
tages are apparent.

Firstly, it removes from the user the necessity of personally determining a partition
on physical or mathematical grounds. This is extremely useful in general simulation
applications, in which the user may not have specialized knowledge.

Secondly, during the solution phase the integration is implicit, and the step size
and order of the integration formula is the same for all components. Naturally, this
avoids the difficulties of matching order and formulae which are inherent in classic
partitioning.
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The sparse partitioning method is also fully dynamic, and automatically caters for
changes in the required partitioning which may evolve during integration in cases of
variable stiffness.

Further study of the possibilities may improve the method of invoking sparse
partitioning. The current use of the e drop tolerance in the sparse structure assessment
is simple to use and automatically assigns a suitable partition, but unfortunately the
relationships among the value of e, the number ot terms it will eliminate and the effect of
eliminating these terms are not directly predictable. Experience has shown, however,
that short trial runs using different values of e will otten quickly indicate a suitable
partition for full computation, and an option which prints Jacobian structure and values
has proved extremely useful in identifying the relationships between e and the physical
meaning of the associated partition.

Finally, it should be pointed out that the use of sparse matrix partitioning is not
restricted to the case on which Jacobian elements are evaluated numerically. For cases
such as the MACKSIM chemical kinetics simulation package [7], in which the Jacobian
is computed from analytical expressions but is stored and handled as a sparse matrix, a
similar drop tolerance decision may be made on the magnitude o any element before
the element is included in the matrix structure pattern.
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ON THE POINT VORTEX METHOD*

D. W. MOORE

Abstract. The discretization of the integrodifferential equation governing the evolution of a vortex sheet
leads to a representation of the sheet by point vortices. It is shown, by examination of the special case of a
uniform circular vortex sheet, that the chaotic motion which often arises when the point vortex representation
is used is due to the amplification of numerically introduced disturbances. The mechanism is a discrete form of
Helmholtz instability. The linear smoothing method of Longuet-Higgins and Cokelet (1976) and the
repositioning method of Fink and Soh (1978) are shown to reduce the instability.

Key Words. point vortex, Helmholtz instability, vortex sheet

1. Introduction. The problem considered in this paper is that of integrating the
equation governing the motion of a vortex sheet in two dimensions.

A convenient formulation, and one which is implicit in numerical work going back
to Rosenhead (1931), is in terms of Birkhoff’s and Rott’s circulation coordinate.
Suppose P is a typical fluid particle of the sheet and Q is a reference fluid particle. If the
vorticity in the sheet is of one sign, the net vorticity or circulation F in the arc QP is a
monotone function of the arc distance between Q and P, and F is a Lagrangian intrinsic
coordinate. It is Lagrangian because the circulation between the fluid particles Q and P
is invariant as the vortex sheet evolves.

Then, if z (F, t) is the complex coordinate of P with respect to axes in which the flow
at infinity is zero, the evolution of the sheet from an initial shape z(F, 0) (0 <_- F _-< l"e) is
governed by the singular integrodifferential equation

Oz* -i t r dF’
(.) 0-7-(r, t)=--o z(r, t)-z(r’, t)’ 0<r<r ;

the slash in the integral sign denotes the Cauchy principal value.
Difficulties of four different types arise when this problem is tackled numerically.
1. The evaluation of the principal value integral cannot accurately be accom-

plished merely by applying a standard integration formula.
2. The integral can diverge at the end points of the vortex sheet.
3. Portions of the sheet with F’ F can have small values of Iz (F, t) z (F’, t)l. This

happens in a tightly wound spiral (Maskew (1977)) or in the modeling of separation
from smooth surfaces (Fiddes (1980)) where the sheet is close to its image in the surface.
This makes the accurate evaluation of the integral difficult.

4. A straight uniform vortex sheet of strength , is unstable to small sinusoidal
disturbances of any wavelength A, the growth rate being 7ry/h. This phenomenon of
Helmholtz instability persists in curved nonuniform vortex sheets, at least for short
waves, unless the sheet is rapidly stretching (Moore and Griftith-Jones (1974), Moore
(1976)). In the author’s view, this will imply that roundoff and truncation errors are
rapidly amplified to cause the chaotic motion which often ruins practical calculation.
Moreover, since the shorter the wave the faster it grows, nonlinear excitation of short
waves can lead to a singularity developing in z(F, t) at a finite time even if z(F, 0) is
analytic (Saffman and Baker (1978), Moore (1979)). Thus the initial value problem for
(1.1) is ill-posed.

* Received by the editors August 20, 1980, and in revised form October 31, 1980.
t Department of Mathematics, Imperial College, Exhibition Road, London SW7, England.
If not, the sheet can be split up into a finite number of arcs or (Baker (1980)) other Lagrangian

coordinates introduced.
65



66 O.W. MOORE

The second and third difficulties will not be treated here and--for simplicity--the
vortex sheet will be a simple closed curve, so that

(1.2) z(Fe, t)= z(0, t);

the shape of the sheet is analytic everywhere.
The first difficulty was overcome by Van der Vooren2 (1965) who subtracted from

the integrand in (1.1) a function with the same singularity, which thus rendered the
integrand regular. The canceling function could be integrated analytically. This is
recommended practice in numerical analysis (Isaacson and Keller (1966, p. 346)) but its
application to the vortex sheet was novel.

If trapezoidal integration is used, Van der Vooren’s procedure leads to

where

(1.4) zo z(pAF, t), (p =o, , 2,... ,N),

and where the range of integration (0, Fe) has been divided into N equal portions of
length AF. Van der Vooren’s interest was in the growth of periodic waves on an infinite
uniform vortex sheet, but his result holds also for a closed vortex sheet; a proof is given
in the Appendix.

If Van der Vooren’s formula is substituted into the governing integrodifferential
equation it becomes

iAF \OF2]Oz* AF
1 = 2 Z z zv

and if the differential coefficients in the last term are replaced by finite differences, so
that, for example,

(1.6) (O__.z_] =zs+l-zs-1
\017 2AF

and

[ O2z zs+l 2zs + z,_(1.7) k-] AFz

a system of ordinary differential equations results. The first term on the right is the
familiar point vortex approximation introduced by Rosenhead (1931), and thus the
error in the point vortex approximation is less than eN, where

OF[,
er=4zrN max i .i

This work, which appeared in 1965 in report form, will shortly be published.
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Thus the point vortex approximation is a consistent approximation because the trun-
cation error e2v goes to zero as the number of integration points goes to infinity,
although it is a crude approximation for any practical value of N. The criticism of the
method made recently by Fink and Soh (1978) is thus unjustified and Baker (1980) has,
by a different method, established the asymptotic validity of the point vortex formula.
In fact, as pointed out by Van der Vooren and by Baker, the error in (1.3) is
exponentially small, because the right-hand side of (1.3) is the result of applying
trapezoidal integration to a smooth periodic function (Isaacson and Keller (1966,
p. 340)).

The fourth difficulty remains to be resolved. In discussing it, it must be kept in mind
that the vortex sheet is itself an approximation to a thin shear layer. Now a straight shear
layer with uniform vorticity and constant thickness is not violently unstable to very short
waves, as was shown by Rayleigh (1945, p. 392). Waves with wavelength less than a
critical wavelength equal to 4.8 shear-layer thicknesses are not amplified.

The contention that Helmholtz instability is the fundamental difficulty in vortex
sheet calculations has been contested by Fink and Soh (1978), who claim that integra-
tion error causes the chaotic motion. In support of this, Fink and Soh introduced a
repositioning technique aimed at improving the accuracy of the evaluation of the
integral in (1.1) and found that chaotic motion disappeared. Moreover, a deliberately
introduced disturbance did not amplify or cause chaotic motion.

In 2 an attempt is made to resolve this dispute. A uniform circular vortex sheet is
studied, because the exact solution of (1.1) and the exact solution of the point vortex
representation equation (1.5) are both known. It is shown that errors grow rapidly,
whether the corrected or uncorrected point vortex formula is used, and that the growth
rate of the error is that of the most unstable mode of Helmholtz instability of the
representing point vortices. The most unstable wave has a period of two spacings,
whereas Fink and Soh introduced a disturbance of length 10 spacings the growth rate of
which on linear theory is 0.36 of that of the most unstable wave. A more stringent test
still of the hypothesis that this discrete form of Helmholtz instability is present is to
Fourier analyze the error; this reveals the presence of less rapidly growing modes, each
growing at its predicted growth rate.

If it is granted that it is the growth of short waves which can ruin calculations with
vortex sheets, it is sensible to consider ways of removing the instability. This is because,
as has been pointed out, the instability is introduced by the step of replacing a shear
layer of small, but finite, thickness by a vortex sheet.

One could give up the vortex sheet approximation and return to the computation of
the evolution of a thin layer. This is without doubt the most satisfactory procedure, but
it involves much more computation.

An alternative approach is to modify the integrodifferential equation (1.1) to
allow for finite thickness (Moore (1978), Dhanak (1980)) but the resulting equation,
while only a little more complicated than (1.1), has not proved amenable to compu-
tation. The equation is valid only for disturbances that are long compared to the
shear-layer thickness and it has a spurious short wave instability rather like that of the
KdV equation, which is also a long wave approximation.

Another possibility is to apply a linear smoothing formula, such as that introduced
by Longuet-Higgins and Cokelet (1976) in their work on nonlinear water waves. In 3
their formula is tried on the point vortex representation of a straight uniform vortex
sheet.It is shown analytically, by an extension of Von Karman’s analysis (Lamb (1932,
p. 225)), to remove completely the most unstable mode of instability, while the less
unstable modes are suppressed or have reduced growth rates. A test on the uniform
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circle shows that one complete revolution can be followed when 60 vortices are used but
that chaotic motion set in at about one and one quarter revolutions.

There remains the question of the absence of chaotic motion in Fink and Soh’s
(1978) calculations and in the subsequent use of Fink and Soh’s method by Sarpkaya
and Shoaff (1979). In 4 a simplified version of this repositioning method is examined
analytically, again in the context of the straight uniform vortex sheet. It is shown to
remove the most unstable mode and to reduce the growth of the higher modes of
Helmholtz instability in this case and thus, while its effect on the accuracy of the point
vortex method can be questioned (Baker (1980)), it is an effective stabilizing technique.

Repositioning was applied to the circle and was shown to increase the time of onset
of visible error by a factor of two. The error appeared, not as chaotic motion, but as a
spurious wave.

Linear smoothing and repositioning were compared for an initially circular
nonuniform vortex sheet. The gross features of the evolution agree but features
involving few vortices do not. Repositioning was markedly more successful in prevent-
ing chaotic motion, which--in these tests--it suppressed completely.

2. The circular vortex sheet. A simple exact solution of (1.1) is that for a uniform
circular vortex sheet of unit strength and unit radius. The flow field for Izl > 1 is a
potential vortex of circulation 2r, whereas for Izl < 1 the fluid is at rest. The circular
vortex sheet Izl 1 represents a discontinuity across which the fluid velocity jumps from
0 to 1 so that the fluid particles comprising the sheet move with a velocity 1/2, which is the
average of the velocities on the two sides of the sheet. In circulation coordinate terms
the solution is

(2.1) z(F, t)=exp{i(F+t)}, 0_-< F-< 2zr,

as can be verified by substituting in (1.1) and evaluating the integral by residues.
If the sheet is replaced by N equal point vortices each of circulation 2r/N placed

along the sheet at angular separations 27r/N, the resulting regular polygon of point
vortices rotate with angular velocity D,), where

(2.2) fl) 1( _)--If, however, Van der Vooren’s correction is applied with fourth order differences for the
derivatives, so that in (1.5)

(2.3) ( O_) Zs-2-- 8Zs-l + 8Zs+l-- Zs+2

12AF

and

[02z’ -zs-2+16z-1-30z+16z+1-z+2(2.4) \OF2) 12AFz

the regular polygon rotates with velocity l), where

(2.5) 1)= 1- +-sec2 +(7-cos b)(4-cos $)-z.

In (2.5)
2zr

(2.6) . =-
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is the angular separation of the point vortices. It is clear that

f) 1/2 + O(N-1),(2.7)

and it can be shown that

(2.8) f/) 1/2+ O(N-5),
which demonstrates the improvement in accuracy obtained when Van der Vooren’s
correction is added to the point vortex formula; even higher accuracy can be obtained
by going to higher order differences. It may be noted that Fink and Soh’s (1978) idea of
replacing the vortex sheet by a polygon with a point vortex at the center of each side of
the polygon gives (2.2) if the polygon is escribed and 12 sec2 1/2 if the polygon is
inscribed. In either case, the error is O(N-I).

To examine the role of the discrete form of Helmholtz instability, (1.5) was
integrated numerically both with and without the inclusion of Van der Vooren’s
correction. Fourth order Runge-Kutta integration was used with a fixed time step
This time step must be shorter than the shortest time scale associated with the evolution
of small disturbances to the polygonal array. If N is large, this shortest time scale is
approximated.by the e-folding time TN of the most unstable mode of a uniform linear
array of point vortices each of strength 2wIN at spacing 2wIN for which (Lamb (1932,
p. 226))

8
(2.9) T =.
The analysis can be repeated with Van tier Vooren’s correction included, to find that,
when fourth order differences are employed, the most unstable mode grows more
rapidly with the e-folding time T, where

(2.10) T 1 +

The mode shape is one of "pairing" and has a period of two spacings, so that its
wavelength is 4wIN. One may note that a wave of length 4wIN on a uniform vortex
sheet of unit strength has an e-folding time 4IN, which is half the corresponding value
for an array. This might explain why making the spatial integration more accurate is
reducing the e-folding time.

In the integration 8t was chosen to be T/5 or T/10, the latter as a check.
The N point vortices were at positions

(2.11) z(O)=exp{i(s-)}, s= 1, 2,... ,N,

at time 0, so that according to the exact solution they are at positions

(2.12) z(t) z.(0) exp (ifl)t), s 1, 2,..., N

at time t. If the calculated positions are z’(t) then a set of complex errors e,(t) can be
defined by

(2.13) e,(t) z’,(t)- z,(t), s 1, 2,..., N.

In Fig. 1 is plotted the logarithm of the mean error defined by

1
(2.14) (t) Z le(t)[,
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FIG. 1. The error #(t) in the case N =60, 6t= Tr/5, with and without Van der Vooren’s correction.

both with and without Van der Vooren’s correction, in the case N 60. Fourth order
differences were used to compute Van der Vooren’s correction. In both cases, the mean
error grows initially rather slowly. Next there is an extensive region of exponential
growth, to which straight lines have been fitted. Finally the growth slackens off at values
of of about 0.1, due almost certainly to nonlinear coupling between modes.

If the principal claim of this paper is correct and the error in vortex calculations is
due to the discrete form of Helmholtz instability, the growth rate r of the error must be
that of the most unstable mode of this instability. This maximum growth rate for a
regular polygon of identical point vortices was calculated by Havelock (1931), and for
large N his results give

tr=
8 2

FO

which gives r 7.03 when N 60, while the value derived from Fig. 1 is 6.99.
Havelock’s analysis can be repeated with Van der Vooren’s correction included, to

predict an increased growth rate r’ given by

tr, N(16) 1 (__)=-g o

which gives tr’= 11.05 when N 60 compared to a value 10.95 derived from Fig. 1.
The initial stage of slow growth can be interpreted as the stage in which the most

unstable mode has not grown enough to leave the other modes behind. However, the
length of this initial stage is about ten e-folding times of the most unstable mode, so that
the question calls for further examination. This is attempted later.

Havelock in fact considered the evolution of more general disturbances to a regular
polygon of N equal point vortices and showed that there are N normal modes in which
the vortices are displaced to complex positions Ys(t), where

(2.15) Y.s(t)- zs(t) z(t)w (t), s 1, 2,... N,

3The exact value when N =60 is 6.991066... see (2.17).
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where p is a mode label taking on the values 0, 1, ., N- 1. The function wv (t) gives
the mode shape, and

(2.16) w(f (t) eept exp {isp4},

where e is a disturbance amplitude, assumed small, and try is the growth rate given by

(2.17) r2o 1/4p (N p)N-2(p(N p 2N+ 2).

The most unstable mode is p N/2 (providedN is even), and this mode is one of pairing
of neighboring vortices, just as in the case of the linear array.

If this instability is responsible for the failure of calculations in which a vortex sheet
is replaced by point vortices, it ought to be possible to detect these modes by Fourier
analysis of the computed complex errors es(t). Thus complex Fourier coefficients

N
--is(p+l)1

e es(t), p=O, 1,...,N-1(2.18) E(t)
s=l

were calculated. If N 60, the modes p 30, 20, 15, 12 and 10 have a periodicity of 2,
3, 4, 5 and 6 spacings and thus are analogues of modes which can occur in a linear array
of vortices, the first being pairing. The growth of these modes is shown in Fig. 2 and their
growth rates are compared with the values computed from Havelock’s result (2.17) in
Table 1. The agreement is good and there can be little doubt that Helmholtz instabil-
ityin its discrete formis present. Note, however, that nonlinear effects occur at an
early stage of the calculation.

TABLE
Comparison of theoretical and numerical growth rates

Periodicity tr from (2.17) tr from Fig. 2

2 spacings 6.991 6.91
3 spacings 6.155 6.17
4 spacings 5.110 5.15
5 spacings 4.280 4.32
6 spacings 3.642 3.62

These modes are not specially strongly excited and the complete spectrum is shown
in Fig. 4. The instability is not obvious graphically until a late stage, as is illustrated in
Figs. 3a, 3b and 3c. Moreover, the flatness of the spectrum explains why the effect of
instability, when it does appear at a magnitude (of, say, 5%) which is graphically
apparent, does not display any obvious modal features. The flatness of the spectrum is
due in part to nonlinear effects.

Examination of the spectrum for small times explains the delay in the appearance
of growth at the growth rate of the most unstable mode. The Fourier coefficient E0 is
O(10-1) while the remaining coefficients are O(10-14) at 0.2667 in the case N 60,
so that the most unstable mode is making a negligible contribution to the total error. It
may be noted that an increase 3r in the distance of each vortex from the center of the
regular polygon gives an error

(2.19) es ,3r e iscb, S 1, 2," , N,

which has E0 3r and Ep 0 (1 _-< p-<_ N-1). Thus Eo represents a small systematic
error, and it is natural to suppose that it is caused by the truncation error arising from
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FIG. 2. The growth of the modes p 30, 20, 15, 12 and 10 in the caseN 60 and 8t Tr/5. Logl01Epl is
plotted against t/ T6o. Van der Vooren’s correction was not applied.

use of the fourth order Runge-Kutta formula. This was checked by noting that this error
diminished by a factor when the time step was halved. However, there seemed no
reason to reduce this truncation error below the value O(10-1 by the use of very short
time steps.

3. The suppression of discrete Helmholtz instability by linear smoothing. In this
section the effect on the growth of short waves of the linear smoothing formulae used by
Longuet-Higgins and Cokelet (1976) will be studied.

Linear formulae smooth by replacing the complex coordinate of each point vortex
zs by a linear combination s of the coordinates of itself and its neighbors, and
"five-point"

(3.1) .s
and "seven-point"

(3.2) z%

-Zs-2 +4z_1 + lOz + 4Zs+l- Zs+2

16

--Zs-3+9Zs- + 16zs +9Zs+l--Zs+3
32

formulae were proposed.
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FIG. 3. The appearance of the point vortices at (a) 3.6, (b) 4.0, (c) 5.6. Note that the modal
structure is not apparent at 4.0.

Both of these formulae can be written in the form

M

(3.3) , Ao+ Y’. Ar(Zs+r q" Zs-r),
r=l

where, in order to ensure that the positions of equally spaced point vortices on a straight
line are unchanged,

M

(3.4) Ao + Y. 2At 1.
r=l

The effect of such a smoothing formula on the growth of waves on an array of point
vortices representing an evolving vortex sheet can be studied by utilizing the analysis
given by Von Karman of this representation of a straight, infinite uniform vortex sheet.

Suppose that an infinite linear array of point vortices have complex coordinates
nh+.,(t) and equal strengths AF, where where h is the spacing in the
undisturbed state. Then, following Lamb (1932), the complex velocity ps(t) induced at
the vortex at sh +. is given approximately by

izxF .,(t)-.p(t)
(3.5) p,(t) p#’, (s _p)2
where nonlinear terms have been dropped.
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FIG. 4. The spectrum at 4.0 in the case N 60 8t TN/5. Loglo[Eo+ 11 is plotted against p to reveal the
comparative flatness ofthe spectrum near the peak atp 30. (Note thatFig. to Fig. 4 were derivedfrom distinct
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For simplicity, it will be assumed that Euler integration rather than Runge-Kutta
integration is being used, and then it follows from the Euler integration formula that the
vortices at time + 8t will be sh + z’s, where

(3.6) z L(t) + p (t)St + O(St2).

If the smoothing formula is applied to z’ to obtain the new positions, then

M

’+ Z A,(z’ t-r)(3.7) zTs(t + St) Aoz +, +z
r=l

so that, from (3.6),
M M

(3.8) 5s(t+St)=Aos+ Ar(L+r+L-r)+t{AoP*s 4- E Ar(p* +oL,)}.
r=l r=l

The evolution of a spatially periodic disturbance to the array will be.examined, so that

(3.9) zT,(t) a(t) exp {is$},

where, if the mode has a period of R spacings,

271"
(3.10) g’=R’ R =2,3,4,....

Substitution of (3.9) into (3.5) and (3.8) leads, after some algebra, to an equation
determining the evolution of the amplitude a(t); this is

(3.11) iAF6t }a(t + St) F(g,) a(t) ,rh G(g,)a*(t)
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where

(3.12)

and

(3.13)

F(O) 1-4 Y. A, sin

G(,) 1/44,(2r- ).
It can be verified that, for either of the smoothing formulae of Longuet-Higgins and
Cokelet, the function F satisfies

(3.14) 0<F=< 1,

and this condition will be assumed in what follows.
Equation (3.11) is a difference equation for a(n3t) which has both a (possibly)

growing and a decaying solution. The growing solution is

(3.15) a (n3t) ao(1 i) n, n O, 1, 2,. .,
where ao is a real constant and

If there is no smoothing, F 1 and

AFSt _/2zr\ \
+ o

AFStG
(3.17) 1 + zrh------.
Thus in the limit 8t 0 and n oo, with nSt t, the solution for a (t) reduces to that given
by Lamb.

In this case, the mode which grows most rapidly corresponds to R 2 or O r,
because this makes G as large as possible. This disturbance is the shortest wave the
discrete array can support and represents a pairing of adjacent vortices. The e-folding
time of this mode is T, where

4h 2

(3.18) T=

T forms a useful time scale for the subsequent discussion. Since AF/h is the circulation
per unit length in the vortex sheet, T 0 as h 0 so that the e-folding time of the most
unstable mode becomes smaller as the number of point vortices is increased. Note that
when h 2/N and AF 2/N, as in the regular polygon of identical vortices of 2,
(3.18) gives T T.

If T is introduced into (3.16), it becomes

(3.19) F 1 +
TR

Since F < 1 for 0 0, the application of smoothing reduces the growth rate of all modes.
Moreover, since F()= 0 for either (3.1) or (3.2), the most unstable mode R 2 is
suppressed. Higher modes are suppressed if < 1.

Accurate Euler integration anyway requires 8t << T, and in this case the disturbance
evolves nearly continuously, with a growth rate Og given by

l{4(R-1) ff ( ())}(3.20) a=+ log 1-sin4
R
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where, for definiteness, the smoothing formula (3.1) has been used to evaluate F. For
example, if 6t T/5, as in most of the calculations presented here, R is negative for
R 2, 3, 4, and is positive for R > 5 with a maximum when R 8; however, tr5 is only
0.004, so that mode is effectively suppressed.

The smoothing formula (3.1) was applied to the case of the circular vortex sheet
studied in the previous section. Fig. 5 shows the spectrum of the error in case N 60,

TN/5. Only the wings of the spectrum grow (so long as nonlinear effects are
negligible) and, as anticipated, the most unstable modes are suppressed. The analysis of
this section cannot strictly be applied to a polygonal rather than a linear array.
However, the Havelock mode of mode label p has a period of approximately R [N/p]
spacings, and if the above discussion of (3.20) is applied it suggests that 0 -< p _-< 10 (and
59 > p > 49) are unstable, in fair agreement with Fig. 5. The predicted maximum growth
rate is 0.329T-1, achieved when p 7. Chaotic motion had not appeared at 12, but
had appeared at 15. Thus a postponement by a factor of roughly 3 has been attained.

It is not easy to estimate a priori the errors introduced by this type of smoothing.
The condition (3.4) imposed on the smoothing coefficients Ar ensures that

/v N

(3.21) AF E =AF E z,
s=l s=l

so that the linear momentum is unchanged by the smoothing. However, it has not been
possible to estimate a priori the effect of the smoothing on the angular momentum or
kinetic energy.

Linear smoothing has one adverse effect which is easily demonstrated by applying
it to the test case of the regular polygon. If zs is given by (2.11) then

(3.22) s zF(4)),

where, as in 2, b 27r/N is the angular separation of the point vortices. Thus, since
F < 1, the radius of the polygon is reduced each time smoothing is applied. This error
will arise in any situation, such as in rolling up, where nearly circular vortex sheets
occur. If N 20 the reduction in radius is by a factor 0.999401 for formula (3.1) and
0.998233 for formula (3.2).4

If N is large, then it can be shown that, in the case of smoothing formula (3.1),
4

(3.23) F 1 --+O
Suppose a time step 6t Tu/I is used and integration is carried forward to the time 4r
corresponding to a complete revolution. Then 4I/Tu time steps are needed, so that in
view of (3.23) and (2.9) the radius of the polygon when 2w is

exp {-1"
Thus the error in radius tends to zero with increasing N and is merely 0.35% in the case
N 60 and I 5.

It was shown in 3 that a change r in the radius of each vortex produces a Fourier
coecient Eo of O(r) and zero higher coecients. The effect of the bias in the
smoothing formula (3.1) is apparent in Fig. 5.

This may in part explain why Longuet-Higgins and Cokelet ound the first formula gave greater
accuracy in practice.
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FIG. 5. Loglo [Ep+l[ as a function ofp in the case (a) 4.0 and (b) 8.0, with smoothing given by (3.1)
and with N 60 and 6t Tv/5. The effect of the bias is noticeable in the large value of IEol.

The error can be further reduced by applying smoothing only every S time
steps--this was Longuet-Higgins’ and Cokelet’s procedure. But then it can be shown
that (3.20) is replaced by

1 {4(R 1)(3.24) cR =- R+SS----TT log (1 _sin4 ;)}.
Thus R 2 remains suppressed, but the stabilizing effect of the smoothing is reduced
for the higher modes. An assessment based on the value of N and the time for which
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stabilization is needed must be made to see if this option is useful, given the likely initial
errors.

4. The repositioning technique. The repositioning technique was introduced by
rink and Soh (1978) in an attempt to improve the accuracy of the point vortex method.
In this section, its effect on the discrete Helmholtz instability of a uniform linear array of
point vortices is examined.

rink and Soh’s repositioning technique was designed to deal with a vortex sheet
with ends, and this leads to complications which can be avoided in the present case.
Thus a simplified version of the technique is described here.

Suppose that at some instant the closed vortex sheet is described by N point
vortices of strengths AFo at positions zo, where p 1, 2,..., N. The first step is to
calculate the arc distance so of vortex p from vortex 1 using the equation

(4.1) sp-sp-l=lzp-zp-,[,
where s 0 and where, if p falls outside the range 1 <_- p <_- N, the periodicity of z

(4.2) zo+r
is used. With this definition, the length of the vortex sheet is L SN/

The next step is to reposition the vortices p 2, 3, ..., N at o, where the new
coordinates are chosen so that the vortices are equally spaced in arc distance from the
vortex 1. Thus the repositioned vortices have arc coordinates s, where

(p-1)L
(4.3) gP

N

If the repositioning is carried out frequently, o zo and the repositioning can be
achieved by interpolation. The function z(s) is known at unequally spaced points s Sp,
so that using three-point Lagrange interpolation, for example, gives

(p--Sp)(Sp--Sp+l) (p--$p-1)(p--Sp+X)P ZP-I(Sp-1 Sp)(Sp-1- Sp+l)
+ Zp

(Sp Sp-1)(Sp Sp+l)
(4.4)

+Zp+l(Sp+l__Sp_l)(Sp+l__Sp), p=2,3,’’" ,N.

Finally, the new vortex strengths are calculated. To do this the sheet strength 3,(s),
defined by

(4.5) V(s) --,cgs

is calculated at s so from

(4.6) (so+l-Sp-1)
"y(Sp)

2
Al"p,

where an estimate of the arc length of sheet represented by the vortex p has been used.
Then Y(go)(P 1, 2,... ,N) is calculated from the set of values y(so) using the
interpolation formula (4.4) and invoking the periodicity of y(so) if necessary. With y(gp)
in hand, the new point vortex strengths follow from
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Clearly the repositioning produces no change in coordinates or strengths when
applied to a regular polygonal array, so that the bias introduced by linear smoothing is
absent.

For the case of the slightly perturbed uniform linear array, the effect of reposition-
ing can be discussed analytically. If, as before, the vortices are at positions

then

(4.8)

so that, in view of (4.1),

(4.9)

zp ph + .p,

s,, (p- + + o(l ,,Ib.

This approximation can be substituted into (4.4) and the corresponding interpolation
formula for y to show that, denoting repositioned quantities by ^,

(4.10) Zp ip + Xl, p 1, 2,. , N,

and

(4.11) Y(go) Y(so), p 1, 2,..., N;

however, variations of the point vortex strengthsre induced by the change of length,
and, if the vortex with label p has strength AF + 8o,

z AF
(4.12) ’0 ’0 --(Xp+l--Xp-1).

Von Karman’s analysis can now be repeated, allowing for the variations of point
vortex strength induced by the repositioning. Thus the complex velocity p, is given by

iAF v 8v(4.13) Os 2h :2 2;h (s -p)’

instead of (3.4).

The analysis of 3 can now be repeated; for the mode defined by (3.9) and (3.10)
the growth factor is given by

(4.14) =1+ 1- 1+ sin

where 8t is the time step of Euler integration and where T, defined in (3.18), is the
natural time scale of the uniform linear array. Clearly/z2 is unity, so that the most
unstable mode of discrete Helmholtz instability is suppressed. Evidently R > 1 for
R >- 3, so that the higher modes still amplify when repositioning is adopted. However,
numerical examination of the result shows that the growth factor of the modes is
reduced by the application of repositioning. The mode R 4 (representing a periodicity
of four spacings) is the most unstable, and its growth rate is roughly one half of the
growth rate of the most unstable mode in the undamped case. Thus the time to the
appearance of a given level of error should be increased by a factor of roughly two when

Actually it is essential to include both e +is* and e -is* dependences in the calculation and also a term
independent of s; the lengthly algebraic details will not be given.
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repositioning is applied. A detailed comparison of the growth factors is given in Table 2,
where values of v, defined by

6t
(4.15) l+-v,
are compared.

TABLE 2
Growth factors + v(St/T) without and with repositioning

Periodicity u (discrete Helmholtz) u (eqn. (4.14))

2 spacings 1.0 0.0
3 spacings .889 .404
4 spacings .750 .489
5 spacings .640 .482
6 spacings .556 .452

The version of the repositioning technique described above was applied to the
uniform circular array. As in 3, 60 vortices were used and repositioning was applied at
each time step, the time step being, as before, Tr/5. The errors became graphically
apparent at about 8.0, or at twice the time in the unsmoothed case of 2, as
anticipated. However, the motion was not chaotic (Fig. 6) although it became so
eventually.

+- I.*0,

’o! "’.o’

FIG. 6. The point vortices at 8.4 in the caseN 60, (t Tr/5 when repositioning was used. A spurious
wave has emerged.

The spectrum of the error at 4.0 is shown in Fig. 7. Clearly disturbances with
wavelength roughly [60/15] 4 spacings are being most strongly amplified. This is in
agreement with the conclusions of the analysis for the uniform straight array.

$. Further tests and discussion. The work presented in the previous sections has
shown that, in the case of the uniform circular vortex sheet, chaotic motion of the
representing point vortices is brought about, not by inaccurate numerical integration,
but by the growth of discrete Helmholtz instability. This chaotic motion could be
delayed by either linear smoothing or repositioning, the latter acting as a nonlinear
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FIG. 7. The spectrum ol error at 4.0 in the case N 60, 3t TN/10 when repositioning was used,
showing most rapid growth [or p--- 15 and p 45.

smoothing process. This delay in the onset of chaotic motion was due to suppression of
the more unstable modes of discrete Helmholtz instability.

The disadvantage of smoothing is that it is not clear in general what the relationship
is between the results achieved and the unknown exact solution of (1.1). As remarked in

1, the initial value problem for (1.1) may not possess a solution for all time, and in this
case the use of smoothing could yield an acceptable-looking solution where none in fact
exists. However, this is perhaps too pessimistic. The actual problem of interest in
aerodynamics is the evolution on a thin vortex layer of features the scale of which is
large compared with the vortex layer thickness. To the extent that the growth of short
Helmholtz waves is suppressed by smoothing, smoothing is turning the vortex sheet into
a thin vortex layer; however, no precise effective thickness can be defined for either
smoothing method. Nevertheless, gross features of smoothed calculations can probably
be accepted as real. In contrast,, the spurious wave produced on the uniform circle in a
repositioning calculation (Fig. 6) shows that features involving few vortices cannot be
accepted as real.

To emphasize these points, smoothing was tried for the initial value problem in
which

(5.1) z(F, 0)=exp {i(F- 0.5 sin F)};

this represents a circular vortex sheet whose strength /(F) is given by

(5.2) , (1-0.5 cos F)-I;
of course, there is no guarantee that a solution exists for > 0.

The nonuniformity of y means that the sheet distorts from the circular for > 0. In
Fig. 8 are displayed the results at 0.5 of calculations using 80 and 160 vortices and
both types of smoothing. The gross features agree, but the details of the small rolling-up
feature differ. Repositioning was more successful at preventing chaotic motion in this
case. The linear smoothing calculation failed at 0.6 (whenN 160, it failed earlier),
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FIG. 8. Comparison of results with at t=0.5 with (a) linear smoothing, N 80 and 8t =0.01" (b)
repositioning, N 80 and 8t 0.01" and (c) repositioning, N 160 and 8t 0.01.

whereas the repositioning results for N 80 remained smooth up to 1.0, when the
integration was stopped. This is surprising in view of the rather better performance of
linear smoothing in the case of the uniform circle. However, the test of linear smoothing
used equal strength vortices, unequally spaced, while that of repositioning used unequal
strength vortices, equally spaced. Now the growth rate of the most unstable wave on a
uniform array of point vortices at spacing h representing a straight uniform vortex sheet
of strength 3’ is zr3"/4h. Clearly, it is an advantage to prevent small values of h arising in a
calculation, and repositioning achieves this.

The values of the invariants

N

r=l

N

12 Y Ar,.zr
r=l

N

I3 E Arz,z *
r=l
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and the Hamiltonian

1
2r all pairs

AF, AFs log IZr- Zsl,

at 0 and 0.5 were compared in the case N 80 and 6t .01. As remarked, linear
smoothing conserves I1 and I2 exactly. Repositioning does not conserve them exactly,
but the variation in I1 was only 0.0002%, and in I2, 0.002%. Neither method conserves
I3, linear smoothing producing a .06% variation and repositioning producing a .04%
variation.

The results for I4 proved difficult to interpret. This is because the numerical values
of I4 happened to be small, being initially 0.0355 in the linear smoothing run and 0.0114
in the repositioning run. Thus the Hamiltonian for the vortex sheet (5.1), which can be
shown to be 0.210.. , was used to form percentage variations which then turned out to
be 10% for linear smoothing and 1% for repositioning. (The discrepancy between the
values of the Hamiltonians of the discrete and continuous systems is O(log N/N).)
Clearly repositioning is causing less variation in the invariants than linear smoothing in
this case.

Appendix: Proof of Van der Vooren’s formula for closed vortex sheets. The
objective is to establish (1.3). To do this the behavior of the integrand near the
singularity must be determined. As in 1, define

(A1) zp z(Fp, t),

where

(A2) Fp =pAF,

and note that Taylor’s theorem gives

(A3) (Oz) 1
z(r,t)=z,+(r-r,) +....

Thus

(A4) 1 1 1
+0(F-F,),

where is an analytic function of F- F$ which vanishes at F F$. This suggests writing

(A5)
zs-z(F,t) z,-z(F,t) (r-r,)(oz/or),

dr-
(r-

since the second integral on the right can be evaluated explicitly and any convenient
integration formula can be used to evaluate the first integral on the right.

Since z (F, t) is periodic, trapezoidal integration is a natural choice. The application
of this integration rule is simplest if the periodicity of the integrand in the integral on the
left of (A5) is invoked to change the range of integration (F- 1/2Fe, Fs + 1/2Fe). Then the
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second integral on the right vanishes and the first integral on the right is

AF
p#s Zs Zp

( 02Z
E + Ar

The middle term vanishes6 and (1.3) follows. Note that the error is exponentially small if
the exact values of the derivatives are used. This is because the integrand in the first
integral on the right, while not periodic because of the second term, is such as to make
no contribution to the error as estimated by the Euler-Maclaurin formula.
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CONVERGENCE OF RANDOM METHODS
FOR A REACTION-DIFFUSION EQUATION*

OLE H. HALDt

Abstract. A reaction-diffusion equation is solved on a grid by a fractional step method, which combines a
deterministic solution of an ordinary differential equation with a random walk solution of the heat equation.
We prove that the expected value of the computed solution tends to the solution of the reaction-diffusion
equation and that the variance tends to zero. The rate of convergence is proportional to the mesh length.

Key words, convergence, random walk, reaction-diffusion

Introduction. Nonlinear partial differential equations can be solved by finite
differences, finite elements, Fourier methods, pseudo-spectral methods and random
methods. For Navier-Stokes equations the convergence has been established for at
least one method in each category except the last. Here the solution is approximated by
vortex blobs in two dimensions [2] and by vortex filaments or vortex segments in three
dimensions [5], [7]. Another random walk technique is the vortex sheet method [4],
which is used to approximate the solution of Prandtl boundary layer equations. The
equations are solved by a fractional step technique. The nonlinear part of the equations
is approximated by a system of ordinary differential equations, and the solution of this
system is used to transport the computational elements. The linear part of the equations,
which is due to viscosity, is then solved by a random walk technique. It is very difficult to
prove the validity of these methods because of the interaction between the linear and
the nonlinear parts of the equations and the combination of deterministic and random
techniques, and previous attempts [18] have been unsatisfactory. However, there exist
partial results. Thus Chorin et al. [3] have established the consistency of the vortex
method, even including the creation of the vorticity at the boundary, and the con-
vergence of the vortex method has been proved by Del Prete and Hald [11], [12] for
flows of an inviscid fluid in a domain without boundary conditions. For three dimensions
Beale and Majda have shown that the vortex segment method converges under similar
assumptions (private communication). Finally, Beale and Majda have proved the
convergence of a fractional step scheme for Navier-Stokes equations in two dimensions
by leaving out the space discretization (private communication).

In this paper we will consider a model problem, namely the reaction-diffusion
equation, and prove the convergence of a random walk method. The equation describes
the temperature distribution in an infinitely long tube filled with combustible gas
mixture. As the gas is ignited, the release of chemical energy will raise the temperature
and flames will propagate through the tube. This can be described by a parabolic
equation with a nonlinear source term. This equation admits traveling wave solutions,
and the existence, uniqueness and stability of these solutions has recieved considerable
attention, starting with Kolmogorov, Petrovskii and Piskunov 15]. For a recent survey
and new results, see Lin [16].

Chorin [6] has proposed a numerical algorithm for solving the reaction-diffusion
equation. The basic idea is to approximate the temperature gradient by a distribution of
particles. The masses of the particles are determined by solving a system of ordinary
differential equations. The positions of the particles are determined by a grid-free
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random walk technique. I have been unable to prove the convergence of this algorithm.
However, if the random walk is restricted to a mesh, and some technical assumptions
are satisfied, then the convergence can be established, as proved below. The main
difference between Chorin’s method and ours is that Chorin uses only one particle per
mesh point, while we create so many particles at each mesh point that the computed
solution is very close to the solution of a finite difference equation. However, our
method is not a Monte Carlo solution of a finite difference equation. Chorin’s algorithm
is of interest because it is a model for the boundary layer technique, but for the
reaction-diffusion equation itself there exist more efficient algorithms; see Dwyer
et al. [8].

The reaction-diffusion equation has been treated from a probabilistic point of view
by McKean [17] and Bramson [1]. The goal is to determine the speed of the traveling
wave, and the solution of the differential equation is expressed as the expected value
of a functional of a branching Brownian motion. This approach restricts the class of
reaction-diffusion equations which can be studied. In particular, it excludes the
Hodgkin-Huxley equation and reaction-diffusion equations with source terms based on
Arrhenius’ expression for the chemical reaction rate. Our convergence proof includes
these cases, which are of interest from a physical point of view.

1. The method. In this section we will present the reaction-diffusion equation and a
random walk algorithm. The reaction-diffusion equation can be written as a nonlinear
parabolic equation of the form

(1) u, vuxx +f(u), u(x, O)= g(x),

where -c < x < oo, v is the viscosity and [ is continuously ditterentiable on [0, 1 with
f(0) f(1) 0. This equation has two stationary solutions, namely u =- 0 and u -= 1. Thus
if 0 -< g(x) -<_ 1 then it follows from the maximum principle [10, p. 43] that 0 -< u(x, t) <= 1
for all x and all > 0. We assume now that u --> 0 as x --> and write u(x, t) e(s, t) ds.
To find an approximate solution of (1) we use the fractional step scheme

(:) u, =[(u),

(3)

Here (3) is derived by differentiating ut vux with respect to x. Why do we use the
temperature gradient instead of the temperature? Because we want the variance of the
computed solution to be small. Thus, if ut vux is solved on a grid by a random walk
method with one particle per mesh point, then the variance at a fixed point does not go to
zero. On the other hand, if set vsex is solved by a random walk method, either on a grid
or by using Gaussian distributed random variables, and u (x, t) is approximated by the
mass of the particles to the right of the point x, then the variance of the computed
solution u is proportional to the mesh length, provided we have one particle per mesh
point initially.

FIG. I. Initial data.



RANDOM METHODS FOR A REACTION-DIFFUSION EQUATION 87

To solve (2) and (3) numerically, we introduce a mesh x -]h and approximate u
and sO’by mesh functions ui u(xi-h/2) and j =(xj); see Fig. 1. Since (2) is an
ordinary differential equation, we solve it by Euler’s method,

(4) v u + kf(ui).
Here k is the time step. This method is easy to analyze and sufficiently accurate for our
purpose. Our next step is to solve the diffusion equation by a random walk technique
[9, p. 323]. We get the initial data by numerical differentiation,

(5) ) v v+
h

At xi we place a particle with mass ui h. Let X X") be a random variable which
assumes the values -1, 0 and 1 with probabilities u/2, 1-, and u/2; here u > 0 is the
viscosity. If X 1 then the particle at x jumps to x+. If X -1 then it jumps to X-l.
Finally, if X 0 then the particle stays at x; see Fig. 2.

h

xj_

FIG. 2. Random solution of the heat equation.

We introduce now the indicator function for X: we set Ii(X)= 1 if X and 0
otherwise. The random walk solution of (3) is then given by

(6) h II(X(i-1))i_ + Io(X(i))i + I_I(X(]+I))K]+I
This amounts to redistributing the mass at the mesh points. Finally we compute the
solution at the next time step by

(7) u Y’. ht.

Wesee that the mass of aparticle is foundby a deterministicmethod, and the position
by a random walk technique. The particles do not exist for long. After each time step the
total mass at a mesh point is given to one particle. I cannot prove the convergence of this
algorithm, because I cannot show that the variance of uj tends to zero. In Chorin’s
algorithm [6] the particles exist for a long time, but if the mass of a particle becomes too
large, then the particle is split into two and each gets half of the mass. We will use a
similar idea. Let a > 0. If scj # 0, then we determine a positive integer N such that

(8) /V. 1 < Ih____ _<_ N..
At x. we place Ni particles with mass hj]N, and let each particle jump as before.
Thus we create many particles where they are needed most, namely where the
temperature gradient is large. The random walk solution of (3) is now given by

(9) hsCi r_, I,(X(i-i))Ki-,,
i---1/--1
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where the random variables XI) assume the values -1, 0 and 1 with probabilities v/2,
1- v and v/2. It would be easier to set all N/= I/a, but the algorithm would become
more expensive, if t is small, then we expect that the new value of : is close to the
weighted average of the old i-1, sci and s/1 with weights 9/2, 1 v and 9/2 and that the
variance of u is small. This is true if a O(k2). Equation (9) can be interpreted
differently. We let the particle at xi jump N times, and share the mass hi between xi-1,

x and xi/l according to the number of hits. Note that, because N depends on the
solution and because f is a nonlinear function, this method is not equivalent to using
(4), (5), (6) and (7) many times and then taking the average.

2. Main result. In this section we will state and discuss our main theorem. We
0consider the algorithm (4), (5), (8), (9) and (7) with initial data u g(x h/2). Since ui

is a random variable we express the convergence of the method in terms of the expected
value of uTand the variance of u. We have

THEOREM. Assume thatfand g are four times continuously differentiable functions,
and thatf(O)=f(l)= O, g(x)=1 forx <= a, g(x)= Oforx >-band that g’(x)<-O. Letv <-1,
a=k2 and k/h2 1/2. Let M =maxto, l (1, If[, If’l, If’l) and assume that h is less than
(2/M)1/2, ((b-a)1/ and (1 + T2)-1/4. If nk <- T, then

[E(u7)- u(x- h/2, t) <= (eMr- 1)[Co,h + Clk + C2’h2],
var(u)<-Co,h,

where Co 2 max Ig’l exp (17MT). The constants C1 and C2 are independent of ,, but
depend upon Tand the derivatives offand g. LetN Y41V. be the total numberofparticles.
Then

1 4

Remark. If f is differentiable in [0, 1] and g is a bounded uniformly continuous
function, then the reaction-diffusion equation has a classical solution see John [13].
However, this solution is not particularly smooth, and it is difficult to estimate the
truncation error for the difference scheme

n+l

(10) Uj --tlj Uj+I--2Uj q-U]-I f( f(k
=9 h2 + ui+l)+(1-,)f(ui)+ U/-1).

On the other hand, if the assumptions in the theorem are satisfied then we can use (10)
to prove the existence of a smooth solution to the differential equation; for the approach
see John 14, p. 185]. This solution will satisfy (10) except for a truncation error of order
O(k) + O(,h 2). This is almost as good as saying that u, and Uxxxx exist and are uniformly
bounded.

That g should be constant at +oo is not essential. It simply means that at each time
step we have only a finite number of particles. This condition has to be satisfied in all
practical calculations. The requirements at +oo can be replaced by the assumption that
0 <- g <= 1 and that the four derivatives are uniformly bounded. The assumption on g’ is
imposed for technical reasons and it is not natural. If it is not satisfied then the algorithm
may have unphysical solutions and it becomes difficult to give a priori bounds for the
computed solution; see Fig. 3. This phenomenon has not been observed in grid-free
calculations because a particle with negative mass has only a small probability of
jumping ahead of the wave. But the possibility cannot be excluded. Lin [16] has shown
that, whether or not g(x) is monotone, the solution u(x, t) converges at an exponential
rate toward a traveling wave solution which is monotone. In the proof Lin assumes that
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Initial data Solution after time step

FIG. 3

f(u) <= 0 for 0 < u <= U and f(u) > 0 for Ui < U < 1, that f> 0 and that f’(1) < 0. These
requirements are satisfied for the Hodgkin-Huxley equation and for reaction-diffusion
equations with positive ignition temperature. Thus our assumption on g’ is not
altogether artificial.

If w(x + ct) is a traveling wave solution of (1) with v 1, then w(x//-+ ct) satisfy
(1) with viscosity v. Thus the gradient of the traveling wave is proportional to 1 //. It is
therefore surprising that in (10) we can estimate the truncation error in the spacial
direction by vh 2. The reason is that, although the solution u(x, t) tends toward the
traveling wave at exponential rate, the gradient of u can at most increase exponentially
provided g(x) is smooth. Thus as v tends to zero it takes longer and longer time before
the traveling wave is well approximated. If g(x)= 1 for x < 0 and 0 for x > 0, then we
have the opposite conclusion, but this case is not covered by our theory.

We observe that the error in the solution u is proportional to the variance of the
random walk and not to the standard deviation. This result is better than Chorin’s
conjecture for random solutions of Navier-Stokes equations wth small viscosity; see
[2]. However, the conjecture may still be right for Navier-Stokes equations, because
the displacement of a particle in one dimension has a different effect on the solution
than the displacement of a vortex blob in two dimensions.

If the mesh length is sufficiently small, then the number of particles is bounded
independent of time. This is interesting because it is not obvious that (8) limits the
creation of new particles. We conclude that the error due to the random method is
proportional to the viscosity and inversely proportional to the fourth root of the number
of particles. The dependence on the viscosity is presumably right, but is likely that a
more sophisticated combinatoric analysis would give a dependence on the number of
particles, which is comparable to the estimates for the heat equation. Anyway, the claim
made by Milinazzo and Saffman [18], that more and more particles are needed as the
viscosity tends to zero, is not true for our case.

3. The proot. The proof consists of three parts. We will first show that the variance
of the computed solution tends to zero as the mesh length tends to zero, and that the
expected value of the temperature gradient is bounded. Actually, the temperature
gradient may become as large as 1/h in any calculation, but this is very unlikely to
happen. The second part of the proof uses the standard arguments for the heat
equation, with small modifications. Finally we show that the total number of particles is
bounded.

We observe first that the computed solution is uniformly bounded and mono-
tonically decreasing. At least, this is satisfied initially. Assume that 0 <- u’ <-1 and

u -> ui+ 1, that u 1 for ]h <= a nh and that u 0 for jh >= b + nh. Since kM _<- 1, we can
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estimate the solution v v of (4) by

u + k[f(u)-f(O)]_-> u + kf’(Ou)u >-0,

1 -v 1 u + k[f(1)-f(u)]>-[1 + kf’(u + O(1 u))](1 u) _>- O,

where IOI =< 1. The same argument shows that v is monotone. Indeed,

v v/x u u/ + k[f(u)-f(u/l)]>-_ (1 kM)(u- u/) >-_0.

This implies that all in (5) are nonnegative and that Y: h 1. Here we have used the
fact that v u for jh <-a-nh and ]h >-b +nh. Since the random walk is just a

n+l 1redistribution of the masses, it follows from (7) that u’/x is monotone and 0 -<_ ui
and we see that u7 +1 1 for fh <-a-(n + 1)h and u’+1 =0 for .ih >-b+(n + 1)h. This
completes the induction step.

We will now study the relationship between u u7+x and v v’. By combining (5),
(7) and (9) we find that

(11) u v/x + (1 v)v + v-i + Q-x +D,

where

(12)

Note that the expected value of Ix(X) is u/2 and the expected value of Io(X) + Ix(X) is
1 v2. We will show that E(C.) E(Dr) 0, and that var (C) and var (Dr) are less than
av/2E(vi-vi+x). Thus we conclude from (11) that

(13) E(ui)=-,E(vi+x)+(1- v)E(vi)+-,]E(vi_x).
It is more complicated to estimate the variance of ui. Let u V + C +D. Then it follows
from (11) that

var (ui) var (V)+ 2 eov (V, C)+ 2 cov (V, D)

+ var (C)+ var (D)+ 2 cov (C, D);

see [9, p. 216]. Since cov (V, C) -<_ 4var (V). 4var (C) we see that

2 coy (V, C)<_-24var (V) 4-E(Vi-l-V,)

-< (var V) + 2vE(v_x vi))
2

By using this result and the fact that 2 cov (C, D) is less than var (C) + var (D), we arrive
at

var (u)-< (1 +,f-da) var (V)+(4-dv +av)E(v-x-vi+x)

-<_(l+k) var(v/)+(l-v)var(v)+-var(v_O +2kvE(v_-v/).



RANDOM METHODS FOR A REACTION-DIFFUSION EQUATION 91

We have now expressed the expected value and the variance at time step n + 1 in
terms of quantities at the previous half step. Before going on we will verify our claims
for Cj and Dj. Let Y vi vi/ and Zt 11(XI) E(11(XIi) )) and drop all indices . The
integer N depends upon the random variable Y. Let Y assume the values y 1," ,
with probabilities pl, , p,,,, and let n 1, , n be the corresponding values of N. We
can then rewrite (12) as

C Z --1 (Zl + + Z,,)yty,(Y).
g=l n

Here Iy (Y) is the indicator function for the set {y }. Itis 1 if Y y and 0 otherwise. This
technique is called conditioning with respect to Y. Let B =Zx+... +Z,,. Since
E(BIy,(Y)) is equal to E(B)p and E(Zt) 0, we see that

E(C)= E YA E E(z,)p =0.
i=1 ni/=1

To estimate var (C) we observe that the functions Iy, are mutually exclusive. Thus
cov (BIy,,Bily) vanishes for all ij. Since the Z are independent and var (Z/)=
(e/2)(1- e/2), we conclude that

2

var (C)= E var (Z)pi
/=1

2

2 .n. 1- p
i=1 ni

OtV YiPi

=E(vi-vi/).
Here the inequality yi/ni <= a is a consequence of (8). The proof for Dj is similar. The
rest of our proof is based on (4), (13) and (14). Note that (13) and (14) depend only on
the expected value and variance of v ’, and that so far we have not used the nonlinearity
of f. Let v v and u u’ and let us say that the random variable u assumes the values
u 1," , u,, with probabilities pl," , p,. Then it follows from (4) that

(15)

(16)

E(v) E(u)+ kE(f(u)),

var (v)=var (u)+ 2k cov (u, f(u))+ k2var (f(u)).

Let Ix E.(u)= urpr. By using Taylor’s formula we see that

(17)

E(f(u))= r [f(la,)+ f’(la,)(Ur- 1,, ]"f (lid, q" Or(Ur [dl, ))(Ur [dl, )2 pr

M
f(E(u))+ O-z- var (u),

Z

cov (u, f(u))= E (ur )[f(/z) +f’( +

<=M var (u).
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Since var (f(u))= E(f2(u))-[E(f(u))], we find from (17) that

4M2 Mvar(f(u))=f2(E(u))+O var(u)-(E(u))+O-var(u))2

<- 3M2 var (u),

where we have used the fact that (rE),, <__ 4 ME. By combining these results with (15) and
(16) and using the fact that kM <- 1, we arrive at

E(v) E(u) + kf(E(u)) + 0.kMvar (u),

var (v) <_- (1 + 5kM) var(u).

We can now connect the expected value and variance of u at time step n + 1 with
the same quantities at the previous time step. By inserting the last two estimates in (13)
and (14) and using Taylor’s formula we conclude that

(18)

n+l 1/ /

E(u )=-E(u+)+(1- ,)E(u)+-E(u_)

+0 -var(u+)+(1-,)var(u)+-var(u_)

var(ui/)<-_(l+13kM) var(ui/)+(1-,)var(ui)+-var(ui_)
+ 4k,E(u"i_ ui+ ).

To prove that the variances tend to zero, the last inequality must be combined with an
estimate for E(U/_l-u//l). By using (18) we get the required estimate,

E u_: ]E(uT-+) u++l <= (l + kM) ’

kMr ,
+ 0--[ var (u_)+ (1 ,) var (u_)+ , var (u)

+ (1 ,) var (u/)+ var (u/)

Let e max/E(u/-ln U/+I and 8 max/var (u’). From the last two inequalities we
conclude that

n+l n+l,e + 8 _<- (1 + 17Mk)(,e + 8).

By using this estimate over and over we find that ue + 8 is less than exp (17Mkn)
o(ue + 8). Since 80= 0 and e is less than 2h max Ig’l, we have shown that the variance

tends to zero as long as nk <- T. This completes the first part of the proof.
In the second part we will compare the expected value of the computed solution

with the exact solution. Let ’ E(u’]) and let Co 2 max Ig’l exp (17MT). We can
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then rewrite (18) as

bn+ i+1+ (1 p)b +-+ k ) + (1- v)f(b)+ f(4+)
(19)

+ okCouh,
where 101--< 1. This shows that the expected value of the computed solution satisfies a
finite difference approximation to the reaction-diffusion equation, except for a "trun-
cation error" of order O(uh). Let ’7 u(xj-h/2, nk), where u(x, t) is the solution of
the differential equation. Since f and g are four times continuously differentiable, we
know that u, ut and Ux,,, are uniformly Lipschitz continuous. Thus if k/h2-1/2 then 4’
satisfies (10) except for a truncation error, which can be bounded by C1k + C2uh, where
C1 and C2 depend on T and the first four derivatives of f and g but are independent of u.

This implies that

,,,+ v [v v ]=-Oj+z +(1- v)Oj+Oj-z + k -f(Oj+x)+(1- v)f(Oj)+-f(Oj-x)
(20)

+ 0[C1k + C2vh 2]
The rest is straightforward. Let e be the error d’ 4’, and set e" max le I- By

combining (19) and (20) and using the mean value theorem we see that

e "+1 -<_ (1 + kM)e + kM(Covh + Clk + CEvh2).
oSince e 0, the result stated in the theorem follows by induction. This completes the

second part of the proof.
Finally we will show that the total number of particles is bounded. We observe that

after the nth time step s is different from zero in at most (b a)/h + 2 / 2n mesh points.
Thus it follows from (8) that

(21) N (,b , a ) Y’. h
h

+2+2n <
a

-<_N.

Since Y’. hi 1 and a k2, we get the lower bound on N and see that 1/k < x/. By
using this result and a h4/4 we conclude from (21) that

b-a 4
N 2T,,/<= ----- + 2 + --.

By solving this inequality as a quadratic equation and using our initial assumptions for h
we arrive at the upper bound given in the theorem. This completes the proof.

4. Open lrolflems. The technique presented in this paper cannot be applied to
random walk solutions of Navier-Stokes equations without serious modifications. First,
we work on a grid, while the random solutions of Navier-Stokes equations are grid-free.
Secondly, we use many particles per mesh point, while every vortex blob is represented
by one particle. Finally, we estimate the variance at a time step in terms of the variance of
the previous time step. It is not clear whether this is possible for random walk solutions
of Navier-Stokes equations. From an abstract point of view, the problem is to make
sense of Trotter’s product formula for nonlinear equations which are solved by a
combination of deterministic and random methods.

On the positive side, our technique can be extended to systems of differential
equations with different time constants. While the monotonicity assumption does hold
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for traveling wave solutions for some reaction-diffusion equations (see [16]), it is not
true generally. The solutions of the heat equation can be replaced by random methods
which include more mesh points, and higher order methods can be used to solve the
system of ordinary differential equations. Thus we should be able to take larger time
steps.

Acknowledgments. The author thanks Alexandre J. Chorin, F. Alberto Griin-
baum and Andrew Majda for helpful discussions.
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A STUDY OF NUMERICAL METHODS FOR
REACTION-DIFFUSION EQUATIONS*

ROLF D. REITZ

Abstract. Numerical methods are applied to one-dimensional unsteady reaction-diffusion equations to
seek traveling wave solutions. These equations describe flame propagation in certain combustion systems.
Model scalar reaction-diffusion equations which admit traveling waves as exact solutions are formulated, and
one of these is solved with twelve different numerical integration schemes for a test problem. The diffusion
terms are differenced using the explicit method introduced by Saul’yev [Integration ofEquations ofParabolic
Type by the Method of Nets, Pergamon, New York, 1964], which, it is shown, can be formally accurate to
O(At3/Ax2). Both implicit and explicit techniques for the reaction terms are tested. The results of the study
with these schemes indicates that numerical diffusion can reduce accuracy significantly, that numerical
dispersion truncation errors can reduce accuracy if they are sufficiently large, and that an accurate
representation of the reaction terms in the difference equations is important to retain overall accuracy. In
addition to the above test problem, results are given using one of the explicit methods for the computation of a
propagating ozone decomposition flame. The results show good agreement with the fourth-order accurate
results of Margolis [J. Comput. Phys., 27 (1978), pp. 410-427] which indicates that more efficient lower order
numerical methods can be sufficiently accurate for practical computations.

Key words, reaction-diffusion equations, numerical methods, combustion

Introduction. Traveling wave solutions to nonlinear reaction-diffusion equations
are of interest in biological applications and in the theory of flame propagation. In
combustion applications recent studies have focused on mathematical models which
incorporate detailed chemical kinetic mechanisms, e.g., Westbrook et al. [16]. This
trend has increased the number of equations which need to be solved and has stimulated
research in numerical methods for reacting gases.

In this paper we present a study of several numerical methods as applied to the
solution of one-dimensional reaction-diffusion equations. The twelve numerical
schemes investigated in the study use variations of the method introduced by Saul’yev
[14, p. 52] for the diffusion terms. These methods have the advantage of being explicit
and can be extended for use in multidimensional computations. Moreover, certain of
the schemes are unconditionally stable. The various schemes studied also include
implicit and explicit methods for the evaluation of the reaction terms. Variation of
parameters in the methods presented here allows the effect of different truncation
errors on accuracy to be explored.

The numerical schemes are first applied to the solution of a scalar model equation
which admits exact traveling wave solutions, and the study permits comparisons to be
made between exact and computed solutions. The results provide insight into the
performance of numerical methods for more complicated systems of equations. Results
are next given using one of the explicit numerical schemes for the computation of a
coupled system of reaction-diffusion equations for the propagating ozone decom-
position flame. The results are compared with those of other authors [2], [8], [9] for this
problem.

Model formulation. We consider propagating wave solutions to one-dimensional
reaction-diffusion equations of the form

OU (k)
__----0 (d(k) Ou(k)) +F(k)(uO), "’’, U(K)),

Ot Ox Ox !
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subject to the boundary conditions

(1)
Ou’) ’(oo, t)

Ou
(-oo, t) O, k l, K.

Ox Ox

These equations model one-dimensional laminar flame propagation in an initially
stagnant premixed mixture of reactants if constant pressure combustion is assumed,
with Lewis number 1, and if a Lagrangian coordinate transformation is introduced.
This coordinate transformation eliminates the convective terms in the governing
conservation equations and leaves the steady flame speed unchanged [11].

In formulating model equations we consider the scalar case K 1 and d) d
constant. In combustion applications u u () could be taken to represent nondimen-
sional temperature such that 0 u c, where a is the adiabatic flame temperature. This
model represents a global irreversible one-step chemical kinetic mechanism with a
stoichiometrically premixed mixture of reactants. In this case F(u)(>0) is usually
modeled with the nonlinear Arrhenius expression [17, p. 95]. Spalding [15] proposed a
simpler algebraic expression,

(2) F(u)=Ou"(a-u),
which approximates the Arrhenius function for large positive n, but no exact solutions
have previously been found for this model.

It is noted here that exact traveling wave solutions can be found for n 2 and rn 1
or, more generally, for F given by

(3) F(u) Bu"+l(a u’), rn >0.

The solutions are

(4) u(x-$t)=[a/(1 +e"Sx-s’)/a)]1/",

and they correspond to a class of stable minimal wave speed solutions, with exponential
decay for x oo, which are discussed, for example, by Lin [7]. In (4) the wave speed is

$ a(13d/m + 1)I/1.

An additional model equation is n rn 1 in (2). This problem (Fisher’s equation)
has been analyzed theoretically by Kolmogorov et al. [6] and numerically by Gazdag
and Canosa [4] in studies which show the existence of a minimum wave speed. McKean
[10] has shown that the final steady wave speed is determined by the nature of the initial
data for this equation. In particular, for initial data which decay exponentially ahead of
the wave, i.e.,

(5a) u (x; O) a e -bx, x

where a and b are constants, the asymptotic steady wave speed is

1
(Sb) S= b +-.
Ablowitz and Zeppetella [1] have found, for the particular wave speed $ 5/,/g, that
an exact traveling wave solution of the Fisher equation is given by (here a =/3 d 1)

5
(6) u(x --- t) (l +
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Numerical method. We describe a numerical method for reaction-diffusion equa-
tions which will be shown to be accurate to O(At3/Ax2) under certain conditions. The
method is given in (7) below. Variations of the method, and in particular several implicit
treatments of the reaction terms, are obtained by varying the parameters , , a, q, B in
the equations. The diffusion terms in (1) are differenced using the explicit method first
introduced by Saul’yev [14, p. 52]. He was only able to show that the numerical method
was accurate to O(ht2/Ax2). The finite difference approximation to the continuum
solution UT,a u(k)(x], n At) is computed at grid points xi from the set of equations

(7a)

(7b)

(7c)

Vi- Uk,]__ 1
At 2Ax

Wi-U
At

where

2 {(d,i+ + d:,i)(U,i+l U:,i

/=1,2,...,M,

k=l,2,... ,K,

Ax is the mesh spacing and M is the number of computational points. In the present
discussion we take

(7d) 6=q=0, =, B=-g.

In this case, (7a, b) consists of two predictor sweeps of the mesh (in opposite direc-
tions) followed by a corrector step in (7c), with the reaction terms being given by an
explicit Adams-Bashforth extrapolation formula. Computationally, the operation
count is similar to that of the back substitution steps in the LU decomposition of the
matrices in certain implicit methods.

The difference equations (7) are still implicit in the diffusion coefficients --k.j’"--*-r. We
will assume that these can be computed from quantities whose values are already known
at time level n + 1; in fact we will later assume that they are constants. In addition,
equations (7) are also implicit in the boundary conditions, but this is not of concern due
to the specification of Neumann boundary conditions as in (1) [13, p. 95].

The numerical method represented by (7) has leading terms, given by a formal
truncation error analysis, which are similar to those of the second-order accurate
Crank-Nicolson [3] method. (Notice that the Crank-Nicolson method is obtained by

Un+lreplacing V/and W. by ,j in (7) with 7 8 a 1/2 and q =/3 0.) Expanding terms
in (7) in a Taylor series about the continuum solution u((xi, (n + 1).At) shows that the
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continuum analogue of the difference equations is

(8)

u,-(dux)x -F(u)

At At 2dy=- (ut-(dux)x -F(u))t-- (1-yl(duxlx,--x (V- W)

+ O(TAx(V- W)xxx, At2, AX, At AX),

where the superscript (k) has been dropped for simplicity and the subscripts and x
indicate differentiation. The second and third terms on the right-hand side of (8) and the
O(Ax(V- W)) term (which will be seen to be O(Atu)), represent a departure from
the first-order Crank-Nicolson truncation error form. The term involving (V-W)x
may be estimated by subtracting the Taylor expansion of (7b) from that of (7a), and a
regular perturbation analysis with small parameter At shows that

’ (dux)t +’ ((dux),-y(d(dux)x))+h.o.t.V-W=
2At2 At3y
Ax Ax

Substituting this in (8) gives

ut-(dux)x -F(u)

(9) At At- (u, (du) F(u)), + (2r-r (1 r))(au

2At2y r
((du),, y(d(dux)x,)) + h.o.t.,

where r dAt/Ax2. From this it is seen that if d const, and

x/l+8r-1
(10) 3’ 4r

the scheme is accurate to O(At3/Ax2). (The negative root leads to a more restrictive
stability condition; see (11) below.) Formal second-order accuracy only occurs under
the additional constraints F(u)=0 and 3’ 1, which in view of (10) implies that r 0.

The condition for diffusional stability of the method in (7) is [14]

1
(11) -->2(1- y),

and it is thus unconditionally stable for 3’ -> 1. However, the Lipschitz timestep
constraint

(12) At<_-
const

maxi OFk’-,j(Ullj)

is present, and recently Hoff [5] has indicated that this may make an unconditionally
stable scheme for the diffusion operator only conditionally stable for the combined
reaction-diffusion system.

Discussion of results. We first present the results of a parameter study of the
numerical method described in (7a, b, c). The parameters used are listed in Table 1. The
various schemes include implicit and explicit methods for the evaluation of reaction
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TABLE
Parameter study of numerical method (7a, b, c) (Imp, CN, Exp, analogous implicit, Crank-Nicolson and

explicit methods).

Scheme
Diffusion Reaction Term

Class 6 a q /3 Class
Leading Truncation Error*

2 Imp 0 0 0 Imp
At At2L2,1- uu + 4r Atb 2r

At rat
CN 0 0 0 Imp (ut- duxx) + rAtc L’2 2

At
III 0 Exp 0 0 0 Imp (u 2 duxx)

2

IV 2 Imp 0 0 0 Exp
At
(u- 2F), + 4r At4 2r At2L2"0

2

V CN 0 0 0 Exp At x.o(u,- duxx 2F), + Atb ---7-- L
2 2

tA
VI 0 Exp 0 0 0 Exp --" (u,- 2 du,, 2F),

2

VII 2 Imp 0 0 CN

Villa 0 0 CN
CN

VIIIb 0 0 - CN

At
(u,-F)t +4r Atb -2r At2L2’1/2

2

At At
Gt + At --z---Lv’

2 "2

At
IX 0 Exp 0 0 CN - (ut-2 duxx-F)t

2

SAt
X CN 0 0 Exp

2 Ax
At At rat2 ,o- G,-- F, + Srx) + rAtc ---f-- L

At
XI 0 Exp 0 0 0 .Exp AtG,--7 (u,,- S2ux,)

2

At At L,,1/2XII Eq. CN 0 0 CN - Gt -----(o)

* G(u)=(u,-du-F); c(u)=dux," L’/’(u)=d[(ut-yduxx),x + 26Fuu,x]x.

terms. A single nonlinear reaction-diffusion model equation was used in these studies.
We show later computational results for a coupled system of reaction-diffusion equa-
tions describing the propagating ozone decomposition flame.

The Fisher equation, chosen as the model equation in these studies, is written as

(13) ut=duxx+U(1-u).

This yields traveling wave solutions with 0 <- u -< 1. Notice that the quadratic nonlinear
source term simplifies the computation of implicit methods (6 0 in (7a, b)) since they
can be solved explicitly.

We set d 1 and used an equally spaced mesh with the domain -50 <_- x _-< 400. This
domain was found to be sufficient to eliminate boundary effects. The initial condition
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U(x, 0) was given by the exact solution (6), which is a traveling wave with S 5// and
u (oo, t) 0, u (-oo, t) 1.

In the results shown in Fig. 1, however, this initial condition was modified slightly in
order to illustrate certain features of the model (13). This figure shows the numerical

1.0

U 0.5

0

-20 0 20 60 100

X

FIG. 1. Numerical solution of Fisher’s equation with initial data" (6) for u > 5 x 10-6 and (5a) ]’or
u<=510-6.

solution U(x), for various times up to time 20, using the standard explicit scheme VI
in Table 1 on a fine mesh with Ax 0.25, At 0.01. The initial data were given by (6) for
U > 5 ’10-6, but for U <-5 10-6 by (5a). The constant b in (5a) was set equal to
0.127, i.e., b + lib ----8, and the constant a was fixed by matching the initial data at the
changeover point. Notice that with these conditions (5b) would predict a change in the
wave speed from its initial value of 5/x/ to a final speed S 8.

The results shown in Fig. 1 indicate that the wave propagates to the right with its
structure preserved up to 8. This is followed by a transition period for 10 < < 16
where the wave profile undergoes a change. Finally, for > 18 the wave appears to settle
to a new structure. The corresponding change in the wave speed is shown in curve 1 of
Fig. 2, which shows speed versus time for time up to 30. The wave speed was
computed from the relation

(14) S | u(1-u) dx,
d_

which is, however, only valid for steady wave propagation. The results in Fig. 2 confirm
that a new steady state, as measured by changes in the wave speed, is reached with speed
8. This agrees with (5b) for b 0.127. Curve 2 in Fig. 2 summarizes a different set of
results which were obtained under the same conditions as those given by curve 1, but
where the initial condition was given only by (6). In this case the wave is seen to
propagate with a speed which agrees well with the exact solution S 5/x/ for the
duration of the computation.

The sensitivity of the results to small perturbations in the initial data which was
seen in Figs. 1 and 2, indicates that the Fisher equation could be an exacting test
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8

6

0
0 10 20 30

TIME

FIG. 2. Computed wave speed versus time lorFisher’s equation. Initial data curve 1, (6) and (5a); curve 2,
(6) only.

problem for numerical studies. Accordingly, the twelve numerical schemes which are
listed in Table 1 were compared for this problem, as will now be discussed with the help
of Figs. 3 and 4. These figures are plots of computed wave speed versus time with a
coarse mesh (Ax 1 and At 0.2) and the initial data were specified with (6) onlyma

2.5 II --III
5/, --

1.5

0 5 10 15
TIME

FIG. 3. Computed wave speed versus time for Fisher’s equation with exact solution $ 5/x/-. Initial data,
(6). Schemes I-VI.
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3.0 X

VII - XIVIIIa --2.5".- Vlllbl -- --_ II

2.0

1.5

5 10 15

TIME

FIG. 4. Computed wave speed versus time for Fisher’s equation with exact solution S 5/x/-. Initial data,
(6). Schemes VII-XII.

steady propagating wave with speed S 5/x/. For the schemes I to VI shown in Fig. 3
the error in the computed wave speed appears to grow, at least initially, linearly with
time. The results of schemes VII to XII are shown in Fig. 4; error growth is more modest
so that greater accuracy is associated with most of these schemes.

Parenthetically, notice that the schemes in Table 1 also resemble several other
standard schemes: implicit (Imp), Crank-Nicolson (CN) and explicit (Exp). Each of

Un+lthese methods may be formed from (7a, b) by replacing V and W with k.j in either
the diffusion or reaction term or both terms, and by making the same choice of the
parameters 3", , a, q and fl as is shown in Table 1. The schemes in (7a, b, c) produce the
same order At truncation errors as the corresponding Imp, CN and Exp schemes which
are shown in the table. These error terms are listed first in the truncation error column
of the table. However, equations (7) generate additional terms, proportional to r At and
r At2, which are also given in the table. In the case of the standard explicit method
(7a, b) become identical and reduce to the standard explicit scheme.

The underestimate of the steady wave speed which is seen in Fig. 3 for the standard
explicit method VI (c 1, 3’ q =/ 0) is primarily due to a first-order numerical
diffusion error. This is demonstrated by comparing the results of this scheme with the
results of scheme XI (Fig. 4), which is identical to scheme VI, except that the physical
diffusion coefficient d was increased by a factor of 1 +(S2At/2d). (Here Sn was
computed explicitly using (14) as the computation proceeded.) This increase in d
minimizes the numerical diffusion effect in steady wave propagation as is seen in the
truncation error column of scheme XI in Table 1.
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A penalty which is associated with the significant improvement in the accuracy of
the explicit method which is seen in scheme XI is that the diffusional stability criterion
r <-1/2 (compare (11) for y- 0) becomes more restrictive for higher wave speeds. For
S >> d/Ax, the stability condition (11) is replaced by the C.F.L. condition SAt/Ax <--_ 1.
However, scheme XI is second-order accurate for the case of steady wave propagation,
and it is therefore of interest to compare its performance with others in Table 1.

In scheme IX ( a , y q B 0) the leading truncation error is -(At/2)dux.
In contrast to scheme VI, this is a numerical dispersion error and not a diffusive error in
steady propagation. A comparison of scheme IX (Fig. 4) with the results of scheme VI
(Fig. 3) shows that this first-order dispersive error does not deteriorate accuracy as
much as the diffusive error. In fact, the accuracy of the method IX is seen to be
comparable to that of the second-order cheme XI.

The parameter y in the diffusion terms of (7a, b) is given by (10) in scheme XII.
Here q fl 0 and a This optimal choice of the parameter y results in aleading
truncation error of the form rAtEL/’l/E(u). (The terms LV’*(u) in Table 1 are derived
from a Taylor series expansion of the methods followed by an analysis similar to that
which led to (9).) In Fig. 4 it is seen that scheme XII performs as well as the second-order
aceurate scheme XI. From this it would be concluded that the rAtELV’*(u) truncation
error terms are small. The results which correspond to schemes VIII a, b andX are also
shown in Fig. 4, and they are seen to give accurate results. The three schemes have the
same leading truncation error. However, differences in their respective truncation
errors do occur in the higher order terms (see Table 1), and the agreement in their
results confirms that the effect of these O(rAt2) terms is small.

The additional term (At/2)(Ft / SFx), which vanishes in steady propagation, in
scheme X (3’ a 1, 8 =/3 0) comes from evaluating the reaction rate explicitly as
F(Uin+qAx) with q =S At Ax. (The reaction rate at x+q Ax (here, -1 <q <0) was
determined by linear interpolation between the rates at xi and xi_l with S" given by
(14).) This method of computing the reaction rate minimizes a truncation error,
-(At/2)Ft, which arises from the similar but slightly less accurate scheme V(y a 1,

q B 0). This may be seen by comparing scheme V in Fig. 3 with scheme X in Fig.
4. The reaction rate is evaluated implicitly in scheme VIIIa (,/= 1, , q fl 0)
and is computed explicitly, but with the same leading truncation error, in scheme VIIIb
(, 1, t q 0, a -, fl -1/2. However, the methods VIIIa and VIIIb (dashed curve)
are seen to produce similar results in Fig. 4. The methods VIIIa, b and X have a first-
order numerical dispersion error rAtuxt. A comparison of their results with those of the
previously discussed scheme IX, which has a truncation error -(At/2)du, shows a
corresponding change of sign in the error in the computed wave speed.

The first-order dispersive error is larger for scheme VII, and is (1/2 + 4r)d AtUxt
(y =2, q =fl =0 and a =1/2). With reference to Fig. 4, this scheme is seen to
overestimate the steady wave speed significantly. Therefore, it would be concluded that
large numerical dispersion errors can deteriorate the accuracy of a method.

The results shown in Fig. 3 also include schemes I to IV, which have not yet
been discussed. Scheme I gave the poorest results in the study. This scheme has /= 2
and the reaction rate is evaluated fully implicitly (8 1, a -/3 q 0). The scheme has
a dispersive error 4r At duxxt, which is greater than that of schemes VIIIa, b and X but
less than that of scheme VII. However, the method has, in addition, a numerical
diffusion error (At/2)U,. A comparison between schemes VII, VIIIa, b and X (Fig. 4)
and scheme I (Fig. 3) shows that this numerical diffusion term deteriorates the accuracy
of the method greatly.
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Finally, a comparison of the performance of schemes I to VI (Fig. 3) with that of the
generally superior schemes VII to XII (Fig. 4) shows the importance of an accurate
evaluation of the reaction term. Schemes VII to XII have first-order truncation errors
---At(U,- Ft). This form of truncation error would lead to a second-order method in the
absence of physical diffusion, i.e., d 0, and it is seen to be preferable also for the case
d # 0. In the following we describe results obtained using the explicit method VIIIb,
which satisfies this latter requirement and which does not have a first-order numerical
diffusion truncation error.

Fig. 5 summarizes results for the ozone decomposition flame propagation problem,
mentioned earlier. This problem has also been analysed by Bledjian [2] and Margolis

1.25

1.00

0.75

0.50

0.25

U4) U()

U2

o,

20 22 24 26 28 30 32

X

FIG. 5. Profiles of temperature (U(4)[]), and atomic oxygen (u)C)), molecular oxygen (//(2)0), ozone
(u3)A) mass fractions at t=2.1 ms after ignition. Minimum Axe-0.25, At--0.3 s. ( results of
Margolis [9].)

[9], who used first- and fourth-order accurate methods of lines respectively. Lund [8]
studied a similar ozone flame problem and used a first-order fully implicit method.
Thus, results are available for comparison. The governing equations are as given in (1)
with K 4 and d(k) assumed equal and constant, u (1), u (2) and u (3) are the mass fractions
of atomic oxygen, molecular oxygen and ozone, respectively, and u 4) is the gas
temperature. The initial data, nondimensionalization and reaction terms Fk) were as
given by Margolis [9]. The problem models flame propagation in a mixture of O2 and
O3(wt). The unburned gas temperature was 300K, and the pressure (assumed
constant through the flame in the model) was 0.821 atm.

Details of the steady wave structure are shown in Fig. 5. The symbols show the
computed wave temperature and mass fraction profiles in a portion of the compu-
tational domain. The results were obtained using an adaptive grid method which
concentrates grid points within the flame. The minimum grid spacing (Ax -0.25) was
arranged to coinc.ide with the point of maximum temperature gradient in the method.
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Further details of the adaptive grid method and more detailed ozone flame results are
given in Reitz [12].

The solid curves show the results obtained by Margolis [9], who used an equally
spaced mesh with Ax 0.2. A comparison of the results shows excellent agreement
between the two calculations. The present computed flame speed was 49.8 +/- 0.1 cm/s,
which agrees well with the value of Margolis [9], S =49.7 cm/s. This agreement
indicates that lower order methods can be sufficiently accurate for practical compu-
tations. The fact that the present results show improved accuracy over the results of
Bledjian [2], who gave S-54.3 cm/s, indicates that the first-order numerical dis-
persion error of scheme VIIIb reduces accuracy less than the first-order diffusive error
in his method. This is in agreement with the findings of the model equation parameter
study.

Finally, it is of interest to note that the time step used in the ozone flame
computation (At 0.3/xs), which is limited by the dominant eigenvalue of the reaction
terms (12), is comparable to that used by Bledjian [2] (At---0.3 s) and by Lund [8]
(At 0.4/xs) (values of At were not given by Margolis [9]). In Lund’s fully implicit
method the timestep was controlled by specifying a maximum number of iterations for
convergence of the solution each timestep. This agreement in the timesteps indicates
that explicit methods can be competitive with implicit methods in certain combustion
problems.

Conclusions. The model equation parameter study has shown that numerical
diffusion effects can reduce the accuracy of a numerical method significantly. Numerical
dispersion truncation errors were also found to be detrimental to accuracy, but only if
they were sufficiently large. The study also points out that the reaction term should be
accurately represented in the finite difference scheme. Generally, methods which are
second-order accurate for the case of no physical diffusion, d 0, were found to be best.

The favorable comparison of the ozone flame computations made with scheme
VIIIb and the results of the fourth-order accurate method of Margolis [9] indicates that
a lower order method is sufficiently accurate for practical computations. The fact that
the results show improved accuracy over the first order results of Bledjian [2] confirms
the finding in the model equation study that a first-order numerical dispersion error
reduces accuracy less than a corresponding numerical diffusion error. Finally, the fact
that the allowable timestep was found to be comparable to the timestep of the implicit
method of Lund [8] suggests that explicit numerical methods could prove to be
competitive in certain combustion problems.

Acknowledgments. The author would like to thank Professors S. Burstein, E.
Isaacson and A. Majda for helpful discussions and comments.
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STABILITY AND MULTIPLICITY OF SOLUTIONS
TO DISCRETIZATIONS OF NONLINEAR ORDINARY

DIFFERENTIAL EQUATIONS*

WOLF-JRGEN BEYNt AND EUSEBIUS DOEDEL

Abstract. A large class of consistent and unconditionally stable discretizations of nonlinear boundary
value problems is defined. The number of solutions to the discretizations is compared to the number of
solutions of the continuous problem. We state conditions under which these numbers must agree for all
sufficiently small mesh sizes. Various examples, including bifurcation problems, illustrate our theoretical
results.

Key words, ordinary differential equations, bifurcation theory, discretization, collocation, stability
theory, extraneous solutions

1. Introduction. We consider a large class of discretizations for the nonlinear
boundary value problem

(1 1) Nu =- u ’) +f(x, u, u 1) -1),... ,u )=0, 0<=x<_-l,

with boundary conditions

n--1 n--1

(1 la) BIu =__ b o (k)(0) (k
k,lU + . bk,lU )(1) 0, 1 n.

k =0 k --0

The discrete approximations all satisfy the conditions for consistency and stability, even
on nonuniform meshes without the assumption of a bounded mesh ratio. These approx-
imations are defined in 2, where we also summarize their convergence properties.

Then, in 3, we consider the relation between the number of solutions to the
discrete problem and the number of solutions to the continuous problem. In general
these need not be the same, not even asymptotically, as the mesh size goes to zero. The
results of [2] indicate that these numbers of solutions can be guaranteed to agree only
under rather restrictive assumptions on the differential equation. Essentially, the result
in [2] is that extraneous solutions must disappear, as the mesh size approaches zero,
when the lower order part of the differential operator in (1.1) is a sublinear function of
its main arguments. We recover this result in 3 with simple proofs adapted to the
special nature of the approximations considered in this paper.

A variety of examples are given in 4. In addition to problems that do not satisfy
the sublinearity condition and that exhibit extraneous solutions, no matter how small
the mesh size, we also give examples of discretized bifurcation problems that have
extraneous solution branches. One of these examples shows that even if a bifurcation
problem does satisfy the restrictive assumption of sublinearity, it still may have
extraneous solution branches for large mesh sizes. Our theoretical results then explain
why these branches must disappear (or straighten out) as the mesh size decreases. A
final example illustrates the effect that discretization may have on the bifurcation
diagram associated with a Hopf bifurcation problem.

2. Definitions and basic convergence properties. The discretizations studied can
be defined as follows. Introduce a mesh {0= Xo<Xl <"" <xj 1}, with hi=-xi-xj_l,
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h (hi, h2," hj) and [hl-- max hi. To each mesh point xj (0 <_- _<- J n) associate a
polynomial pj P,/m-1. Here Pd is the space of all polynomials of degree less than or
equal to d. Define Ph { J-n n.m n,mPj}=0. Let Ph Ph [1,/.t2, ,/-t,n] denote the linear space
of all Ph satisfying the boundary conditions (1.1a), in the sense that

n-1 n-1

b o ..(k) (k)(2.1) Y. k,1t10 (0)+ bk,lP_,(1)=O, l <--l<=n,
k =0 k =0

as well as matching conditions of the form

(2.2) pj(xj+ta.k)’-’pj+l(X]+g.t,:), l<-k<=n, O<-/<-_J-n-1,

where 1 -</z /./,2 <=" /-/,n n. If not all integers iU,k are distinct, then we define this to
imply that derivatives also match, in the obvious manner. The discrete method now
consists of finding Ph P" satisfying the collocation equations

(2.3) Npi(zi.i)=O, l <-i<-m, O<=/<-_J-n,

where for each j the z..i are distinct points in [xi, xj+,.]. The zi, are assumed to be locally
semiuniform, i.e., minlz.,-zi.l>-Clxi+,.-xi[, for some constant C which is
independent of j and h. This assumption is not strictly necessary (e.g., [6]), but it
simplifies the argument somewhat. Note that it does not impose any restrictions on the
mesh, if the zi.i are chosen systematically with respect to [xj, xi+,.].

Examples. The orthogonal collocation methods correspond to taking 1,
1 <= -< n, and Gauss zi.i 1 ], [4]. Spline collocation methods can also be viewed as having
/xg 1, 1 -< <- n, but with m 2, zi.1 xi, zi,2 xi/l [17]. For a survey of such projection
methods see [16]. The generalized finite difference methods of [5], [6], [13], [14], [15],
[18] are obtained for general m and/xk k, 1 -< k -< n.

The essential characteristic of all methods included in the present framework is the
fact that all derivatives up to order n- 1 of each pair of consecutive polynomial
components pj and pi/l match somewhere in [Xi+l, xi/,.]. But derivatives of order
greater than n 1 are not required to match. If tZk 1 (1 <-- k -< n), this is clear, since this
is the case where all derivatives up to order n 1 of each pi, pj/ match identically at xi/ 1.

If not all /Zk are equal, this matching follows from repeated application of Rolle’s
theorem.

Introduce the following norm" If W_h Ph then

(x)[II_w, ll, max max max [wi
O<=k<--p O<_j<__J-n x[xi, xi+

Also, for w C’[0, 1], we use the notation

<)(x)-w<)(xII_wh-- wll.---- max max max Iw )l.
O<--_k<--_p O<=]<-J-n x[xi, xi+,,

The proof of the following lemma is very similar to that of [6, Lemma 2.1] and will be
omitted.

LEMMA 2.1 Let {h} be a sequence ofmeshes with Ih --" 0 as , --, oo. For each ,
let W.h e Ph with IlW_ hll <--_ C. Then there is a subsequence {_Wh}=x and a ]’unction
w e C"-[0, 1] such that II_wh- wll--" 0 as -,.

Remark. For simplicity we do not notationally distinguish between sequence and
subsequence.
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Rewrite the collocation equations (2.3) in operator form as

ghPh O,

where Nh maps P" into R "’" .(J-.+l n.. __{ri.i:0<h For rhRh ,r.h =j<--_J-n,
(J-n+1))1 <_- -_ m}, let rhll maxlr 1- (This is the usual max rorm on Let Lh[W_h

be the Frchet derivative of Nh at W_h Ph Thus Lh[W_h] maps P," linearly into
Rh as follows: Lh[W_ h]q_h "-r.h, where

(n--l) (Z] i))q (k) (Z],i)rj.i q" (zi,i) + E .fy (z,i, w(zi.i), w
k=0

l <_i<_m, O<_]<_J-n.

Here the arguments of f are indicated as f=f(x, yo, yl,"’, y.-1). The induced
operator norm is given by

Ilth[W_ h]ll---- max [[th[W_ h]qh[[oo.
II_qh I1,,

Let U_h {Uj (X)}/=0J-n phn’m interpolate a solution u of (1.1), (1.1a) at the mesh points and
at certain additional points ti, [x., xi+,.] as follows:

ui(xi+.) u (xi+.), 0 <--_ k <- n, 0 <- ].<- J n,

ui(ti,)=u(ti,), l<-i<-_m-1, O<-]<_J-n,

where repeated points, if any, denote Hermite interpolation. Also define

Bne(U_h)’--lW_ h eP,""" II_Wh--_uhll. _--<el.

We say that f(x, Yo, Y," , Y.-) has Lipschitz continuous derivatives with respect to
Yo, Y, ", Y.- in a p-neighborhood of v C-1[0, 1] if

.., maxo<-_k<-n-lmax [fy/ (X, a0, an-l)--fyk (X, riO, ", in-1)[ < KL
O<-l<-n-1

for all {a,Bl} with maxllal-v(l(x)l<--_p, maxll-V(n(x)[<=p, and for all x[0, 1].
Here Kt---KL[V] and p =--p(v) are positive constants that do not depend on x.

LEMMA 2.2. Let f have Lipschitz continuous partial derivatives with respect to
y0, y," , y,- in a p-neighborhood of u. Here u C"+’[0, 1] is an exact solution of
(1.1), (1.1a). Then for all sufficiently small [hi we have

IlLh[V_h]-- Lh[W_ h]ll <---- nKllv_h _whll.-,,

whenever
n-1

V_h, W_h Bo/2 (U-h)"

A solution u C"[0, 1] of (1.1), (1.1a) is called an isolated solution if the linearized
problem

L[u]v =-- v(")+ E fy (x, u, u (), u("-X))v(g= 0,
k=0

subject to the boundary conditions Btv O, 1 <-l <-n, admits only v(x)O as solution.
Below it will also be assumed that each fy(x, Y0,"’ ", yn--1) is continuous in x, in a
p-neighborhood of u. By this is meant continuity in x for [yl--u(t)(x)l<--p,O<--I <-

n 1, x e [0, 1] with p =-- p[u] independent of x. We can now state the following stability
result:
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THEOREM 2.3. Let f have Lipschitz continuous derivatives with respect to
y0, yl,’", y,-1 as in Lemma 2.2 and let each fyk be continuous in x, all in a
p-neighborhood of an isolated solution u C"+’[0, 1] of (1.1), (1.1a). Then there are
positive constants 8, e and K such that

IIv, _w, ll KIIN,v_h NhW_hlloo.

]’or all V_h, W_h B(_h) and for all meshes h with Ihl (0, ].
For a proof of the statement above, one can first appeal to the general theory in [9].

This simplifies the problem to that of finding a corresponding stability result for the
linearized problem. The linear case has been dealt with in [6], using a technique from
11 ]. Actually the discretizations in this work are slightly more general than those in [6],
but this would be hardly noticeable in the proof.

A more direct approach is equally well possible and outlined below.
Sketch of proof. Suppose that the conclusion of the theorem does not hold. Then

there exists a sequence of meshes {h}=l and corresponding e" >0, K" >0, and
v h v, W h B (_h), with Ih l 0, e 0 and K oo as v oo, such that8v

I1_, _w,ll >KIIN,v_,
By the generalized mean value theorem

Nh"_h --NhvW_ h Lhv[_h% W_ hV](_h W_h,,),

where

Lh"[U_h% W_ h"] I01 Lh"[tV_h + (1 t)W_ h dt.

Thus, if we let _eh (ll_v, _wll)- (_/-)h _WHY), then II_ehll. and IIt, [_v,. _w,]_e,lloo <
n-1(K)-1. We may assume that e <p/2= for all v, so that V_h, W_hBo/2 (U_h), and

also that [h l is sufficiently small for all v, so that the estimate of Lemma 2.2 is valid.
Therefore

IILh[U_h]e_hvlloo <= IILh"[_h"]e_h L,[V_h,’, W_ h"]e_hvlloo + IILh[V_h, W_ h]e_hl[oo

< fo IlLh[tU-h" + (1 t)_h]--L[t_h + (1 t)W_h[I dt + (K)-
<= Io ngLIIt(U-h v-h) + (1 t)(R_h _Wh)ll,-1 dt + (g)-1

<-- nKLe + (K")-I -> 0 as v -->

Since I]_eh]}- 1 for all v, it follows from Lemma 2.1 that there is a function
e(x) C"-[0, 1] and a subsequence = such that ]]_eh--e]l-i0 as v o. Using
the techniques of [6] it is then not difficult to show, that in fact e C"[0, 1], e # 0 and
L[u]e =0. Also e(x) satisfies the homogeneous boundary conditions (1.1a). This
contradicts the assumption that u is an isolated solution. Thus the statement of the
theorem must be true.

Given the result of Theorem 2.3, it is easy to establish convergence. For this
purpose define the truncation error ’.h h by

r.h NhU_h.

Thus r.h has components 7"], Nu](zi.i). In general, if u C"+" [0, 1] then r.h satisfies an
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estimate of the form

I1.11-<_ fu]lhl
but the order can normally be improved by suitable choice of the collocation points f4],
{5], 1-13], flS]. For example the order is at least m + 1 if for each j the z.,i are chosen to
coincide with the roots of

(x x+) 1-I (x t.)
k=0 k=l

Below we also need a bound on the error in interpolating an exact solution u of (1.1),
(1. l a) by _Uh e p,n in the manner indicated before. For this we have

[lu_, u[l <- M[u31hl,
provided again that u C+[0, 1].

THEOREM 2.4. Assume that the conditions of Theorem 2.3 are satisfied. Then there
is a positive constant such that NhPh 0 has a unique solution

Ph P’ in B U_ h and such that

Ilpn-ull <=(gM[u3/M[u3)lh[, wheneer Ihl (0, 3.
Proof. The existence proof is identical to the corresponding part of the proof of

[9, Thm. 3.6]. The error estimate is obtained as follows:

<-- gllXhPh ghU_hltn + M.Eu]lhl

<= gllghU_ hll. +
<- (gMzfu + Ma[u ])lh

3. Multiplicity of solutions. Theorem 2.4 in the preceding section guarantees that
every isolated solution of the continuous problem is approximated by a solution of the
discrete problem. Such a discrete solution is then itself necessarily isolated for all
sufficiently small Ihl, because stability implies isolation. The proof of this fact is
essentially the same as the proof of !-9, Thm. 2.5], where it is given for the continuous
problem. Not much can be said if the continuous problem has a solution that is not
isolated. For example, in such a case it is possible that the discretization has no solutions
that converge to the given nonisolated solution of the continuous problem. Most of
these difficulties can be avoided however by considering solution branches instead of
single solutions, and following these with a continuation procedure.

Below we state a global convergence theorem. It does not exclude the possibility of
existence of extraneous solutions to the discrete problem, not even for small
However, under some mild continuity assumptions, the theorem shows that if such
extraneous solutions exist, they must tend to infinity in the appropriate norm as Ihl 0.
The proof of this fact bears resemblance to that of Thm. 2.3, although it deals directly
with the nonlinear equation.

THEOREM 3.1. Assume that the problem (1.1), (1.1a), has exactly N solutions
b/I/](X) cn+m{o, 1], N <, each of which is isolated. Let f have Lipschitz continuous
derivatives fyk, O<-k <=n-1, and let each fyk be continuous in x; all in a p[utlJ]
neighborhood of each u. In addition assume that f is continuous in all its variables
in a p-neighborhood of every vC"-l[0,1]; p[v]>O. Then for each R>
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maxX_lllutlall, there exists a 6R > 0 such that the discrete problem NhPh 0 has exactly
N solutions pt] p,.,, in B(O), for all h with Ihl e (0, r].

Proof. he assumptions above include those of Theorem 2.4. Hence each u [l] is
approximated by a solution ptl of Nhph Oo For all sufficiently small Ihl these p] must
be distinct, due to the isolatel nature f each of the u []. Also, since R > maxt lift’all., the
p] must eventually (for small Ihl) lie in B(0). Assume now that we can find a
sequence of meshes {hV}=l with Ihl0 as --,, and for each
pt, I<_I<_N, of Nh"Ph=O, with IIp..ll.<-_R. Then by Lemma 2.1 there-is a
,ubsequence {phv}vl and a function p C"-1[0, 1], such that Ilph

Let s e [0, 1], and for each u let ] --iv be such that s [xi, x.+,. ]. For each fixed ] let
the polynomials i -= iv.i denote the Lagrange interpolating coefficients for the points
zi =-zjv,, 1, 2,..., m. Since the collocation points are assumed to be locally semi-
uniform throughout this work, we have

max max I,j,i(x)l -< K,
i,] Ixi, xi+,

for some constant K that does not depend on h. Write w*= (w, w(l,
Consider now the following estimate:

(" (s) + f(s, p * (s))l

2 qti(s)f(zi, Pi * (zi))+f(s, p * (s))
i=1

i(s){f(s, p * (s))-f(zi, Pi * (zi))}
i=1

<--_ mK, max {If(s, p * (s))-f(zi, p * (s))[

+ If(z,, p * (s))-f(zi, pi * (s))[ + [f(zi, pi * (s))-f(zi, pi *

The added continuity assumptions can now be used to show that the right-hand side of
this final inequality tends to zero uniformly in s as u o. From integration, letting
u oo and differentiation it follows that p C"[0, 1], Np 0 and Btp 0. Again the
details proceed much like those given in the proof of [6, Thm. 2.2]. Thus ph tends to
another solution p of the continuous problem. This new solution p must be distinct from
the other N solutions, for otherwise the stability result of Thm. 2.3 is violated for one of
the u ttl. Hence we have derived a contradiction. U

Under rather restrictive assumptions on the form of the differential operator it is
sometimes possible to derive a priori bounds of the form ]]Ph[] -< K for all solutions of
NhPh --0 and for all meshes h with Ihl sufficiently small. It then follows from Theorem
3.1 that extraneous solutions must disappear as ]hi 0. This is the case, for example, in
the following class of problems:

THEOREM 3.2. Assume that the conditions of Theorem 3.1 hold. Also assume that
for all h with Ihl sufficiently small (say [hle (0, ], , > 0) we have

(i) Nh Zh + Gh, th linear, invertible, IItll_-<g, and
(ii) For each e > 0 there exists a positive number K(e) such that

(3.1) a.p. g + P. for all solutions Ph OfNhPh O.

Here K, K(e) and e are independent of h. Then there is a 61 > 0 such that the discrete
problem Npa 0 has exactly N solutions for all meshes h with [h[e (0, 61].
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Proof. We need only establish that all solutions of NhPh 0 are uniformly boun-
ded. But this is trivial since

Thus if we choose e < 1/Ks then

KsK(e)
1 -Kse

COROLLARY 3.3. In the problem (1.1), (1.1a) let Lu u ("), and assume that the
linear homogeneous problem Lu O, subject to (1.1a), admits the trivial solution only.
Also assume that

If(x, yo, yl,’", y,-1)[-<-C1+C2{ max {yk[}",
O_k-<n-1

with 0 <-_ a < 1. Further, let the conditions of Theorem 3.1 be met. Then the discretization

NhPh 0 cannot have extraneous solutions on meshes h with Ih] sufficiently small.

Proof. We need only verify that a bound of the form (3.1) holds. For this purpose
we shall make use of the following elementary inequality. For each given > 0 there
exists a constant M() such that

r<-_M(g:)+r forallr_->0.

Now let e > 0 be given. Then

IIhPhlloo ma.x If(Z,i, P (z..,))l

<-- C1 + Cz max ( <ax Ip) (zi,,)l}
i,] O--_k<=n -1

-<-C,+C211P_h}lA<=K(e)+ellP_hll,, withK(e)=-Ca+C2M(---). [3

Note that Corollary 3.3 applies in particular if a 0; i.e., extraneous solutions must
disappear as Ih[ 0 when the lower order part of the operator is bounded.

4. Examples. One can easily construct examples of discretizations that have
extraneous solutions on a given mesh. It is somewhat more difficult to find a problem
where the discretization has extraneous solutions on each of an infinite sequence of
meshes with mesh size tending to zero. For stable discretizations of the type treated in
I-2] and in this work, such examples cannot be found for operators with a sublinear lower
order part. The following example is given in [7]. The boundary value problem

u" + u’[u’l O, x e [0, 1],
(4.1)

u(O) u()

has u(x)=- 1 as its unique solution, while the discretization

(uj+l 2ui + ui-a)/h 2 + (uj ui-1)/h[(u ui-1)/h[ O, l_</’_<j- 1,

Uo= u 1

has in addition to uj 1 (0 _-< _-<J) also the zig-zag solution ui (-1)i for all uniform
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meshes with J even. Of course this difference approximation is only first order accurate.
But this is not essential, as the following example indicates.

Example 4.1. To approximately solve

(4.2)
u"+2u[u’]Z=O,
u(O) u() , x e[O, 1],

consider the second order finite difference scheme

(ui+l-2ui+uj_l)/h2+2u[(ui+l-Ui_l)/2h]:z=O, l <-j<-_J-1,
(4.3)

Uo= Uj 1.

The discretization (4.3) has in addition to the constant solution u. 1 (0_-<j-<_J) also
the solution

if j 0 or 3, mod 4,

if/" 1 or 2, mod 4,

provided J 3 mod 4. This can be verified directly by substitution. However, the
continuous problem (4.2) has u(x) =- 1 as its unique solution. For if v(x) is another
solution of (4.1) with v(s) 1 for some s [0, 1], then there exists a (0, 1) such that
v(t) 1, v’(t) 0. Hence v(x), as well as the constant function u(x)=v(t), x [0, 1],
solve the initial value problem

u"+ 2u[u’]2 O, x [0, 1],

u(t)=v(t), u’(t) 0.

Therefore v(x)=-v(t) for all x [0, 1], which contradicts the fact that v(1)= 1. (A
similar argument can be used for (4.1).) Thus the solution u (x)-- 1 is unique. It is also
clearly isolated.

For nonlinear problems containing a parameter, it can be instructive to compare
the bifurcation diagram of a discretization to that of the continuous problem as is done,
e.g., in [3]. As a simple numerical example consider the following:

Example 4.2. Discretize the nonlinear boundary value problem

u"+ h sin (u +//2 _1_ u 3) 0, X e [0, 1],

u(O) u() o
by the 4th order accurate, 3 point Numerov formula, with uniform mesh and mesh size
h . Using the continuation and branch switching techniques of [10], one obtains the
bifurcation diagram of Fig. 4.1. In the diagram the vertical axis represents a discrete
L2-norm of the approximate solution. Observe that u(x)=-O is a solution for all h.
Bifurcation points have been circled. The branches originating from the secondary
bifurcation points areactually double branches that coincide in the diagram due to some
symmetry. If the mesh size is decreased to h , then the diagrarfi changes to that of
Fig. 4.2. This of course can be expected to be more like the actual diagram of the
continuous problem. Extraneous solutions, which are abundant in Fig. 4.1, must
disappear when the mesh size goes to zero, provided h is such that the continuous
problem has only isolated solutions. This follows from the boundedness of the lower
order part of the continuous operator. However, we have observed that within the limits
of the given bifurcation diagram, extraneous solutions do not disappear until the
number of meshintervals J is taken greater than 50.
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1.2

1.2

FIG. 4.1a. Bifurcation diagram of the discretization in Example 4.2 (J 8).

1.2

J=8

luhl 12

0"37.
FIG. 4. lb. Local enlargement o[ the bi[urcation diagram in Fig. 4.1 a.
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1.2

FIG. 4.2. Bifurcation diagram of the discretization in Example 4.2 (J 70).

Next we give an analytic example where the bifurcation diagram of a discretization
has an extraneous bifurcation point and associated extraneous solutions, no matter how
small the mesh size.

Example 4.3. The solutions of the one parameter nonlinear problem

v +(l+[v ()])txv O, x e [0, 1],
(4.4)

v(O)=v()=o

are homeomorphically related to those of the linear problem

u"+hu =0, x e[O, 1],
(4.5)

u(O)=u(1)=o

through the transformation A (1+[ 2v()] ), u=v. The same is true for their
respective discretizations

2(vi+-2v+v_)/h2+(l+Vl/2))tzv=O, l<-]<=J-1,
(4.6)

Vo O, 4v.-1 3v. O, J even,

and

(uj+a-2uj+uj_)/h2+,uj=O, l <-]<=J-1,
(4.7)

u0=0, 4u._ 3u =0,

both of which are consistent and stable for isolated solutions. We claim that (4.7) has an
eigenvalue A that is asymptotically (as h -0) given by A -l/12h. Thus, unlike the
eigenvalues (kvr)a of (4.5), which are all positive, the discrete problem (4.7) admits
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a negative eigenvalue. To prove this, we note that an eigenvalue of (4.7) has. the form

u cz +cz,
where zl(A) and zz(A) are the roots of the characteristic equation

(4.8) zz- 2z + 1 + Ah2z O.

Now if zl is a root of (4.8) then so is z-. Moreover, the boundary condition u0=0
implies that c =-cz =-c. Thus

u =c[z-z-].
The second boundary condition yields the equation

(4.9) 4[zr-a- z-(:-a)] 3[z: z-:] O.

Notice that for large J (4.9) has a root z z (A) with ]z[ > 1. This root asymptotically
satisfies 4zJ-1-3zr =0; i.e., z =-. The corresponding eigenvalue AE-I/12h2 is
obtained from (4.8), and the associated eigenvector is ui c[(]) (43-)J]. Note that ui 0
if c 0 and/0.

The corresponding solution branch of the nonlinear discrete problem (4.6) is
therefore asymptotically (as h 0) given by

where

(t (c ), vi(c )), -< c <,

and

(c) E
1 + c[()"/- d)’/]

vi(c) c[(k);-dY].

(For related techniques see !8, 20].) The extraneous solution branch is shown in Fig. 4.3
for the case J 16. This solution branch exists for all meshes with even J and is
extraneous, since the continuous problem (4.4) has no nonzero solutions for negative
/x. In particular, for any/x < 0 one can choose h sufficiently small so that AE </x. For
such/z the discretization (4.6) evidently has three solutions, unlike the continuous
problem (4.4).

Finally we give a numerical example, where the objective is to determine time
periodic solutions to an autonomous system containing a parameter. It is generally
necessary to reformulate the problem as a boundary value problem on a fixed interval,
say [0, 2zr]. This allows the numerical computation to proceed past turning points and
makes the computation of asymptotically unstable solutions possible. A general code
for the bifurcation analysis of autonomous systems has been developed by the second
author and will be described more completely in a forthcoming paper.

Example 4.4. The dynamic behavior of a single first order chemical reaction in a
continuously stirred tank reactor can be modeled by the ordinary differential equation

(4.10)
U’l =-ua +B Da (1-u:z) e’l-13u,

U Ulz =-u:z+Da(1-uz) e

where B,/3 and Da are dimensionless parameters.
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extraneou:
branch

J=16

FIG. 4.3. Graph of the extraneous branch in Example 4.3.

For previous computations with initial value techniques, see [19]. Using vector
notation and scaling the period to the interval [0, 2r], we can write (4.10) as

(4.11) u’(t)=--f(u(t),A), A =-Da,

(4.12) u(0) u(27r).

Further, we use the specific values/3 3, B 14. To remove the nonuniqueness, due
to the fact that a periodic solution can be freely translated in time, we impose the
orthogonality condition

(4.13) (u(0)- Uo(0))r]’(Uo(0), Ao) 0.

Here (Uo, Ao, 0o) denotes a given solution, while (u, A, 0) is the solution to be deter-
mined from (4.11), (4.12), (4.13) and

(4.14) Ilu u011= + = + (o o0)= as =.
This procedure is repeated stepwise along a branch of periodic solutions. We discretize
(4.11) by the method of collocation at Gauss points, using the piecewise polynomial
space whose elements are globally continuous and quadratic polynomials in each mesh
interval. With an adaptive mesh, 71 mesh points and two collocation points per mesh
interval, the corresponding bifurcation diagram in [19] is recovered. (See Fig. 4.4.) The
primary solution branch is a branch of steady states, while the secondary branch consists
of periodic solutions. Along a significant portion of the periodic branch the solution
changes very rapidly in a very small interval. Moreover, the location of this small interval
does not remain fixed along the branch. The adaptive mesh is for this reason a necessity.
For example, 71 uni]’ormly spaced mesh points do not reproduce Fig. 4.4. A typical
result is given in Fig. 4.5. Here an insufficient number of 10 uniformly distributed
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4.0

3.0

B 14.0

NTST 70

adaptive mesh

FIG. 4.4. Bi]’urcation diagram ]:or (4.10).

Da

=3.0

B 14.0

tTST i0

uni form mesh

Da

FIG. 4.5. Effect of an inaccurate discretization on the bifurcation diagram of (4.10).

0.4
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mesh points is used. Note the abundance of extraneous solutions. The ability of the
method to compute past turning points is especially well illustrated, although the
resulting diagram may have little physical significance.

Remark. Although the side condition (4.13) is theoretically sound, i.e., local
existence theorems can be based upon it, for practical numerical computation the
integrated form

2r

o
(u(t)- Uo(t)7)’(Uo(t), A0) dt 0

is preferable. The modified condition minimizes motion of regions of rapid change in u
when progressing along a branch of periodic solutions. This property significantly aids
the efficiency of automatic mesh selection. Details will be presented elsewhere.

Acknowledgment. The second author wishes to thank Dr. Rita Meyer-Spasche of
the Max-Planck Institut fiir Plasmaphysik for some stimulating discussions.
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A GENERALIZED EIGENVALUE APPROACH FOR SOLVING RICCATI
EQUATIONS*

P. VAN DOOREN

Abstract. A numerically stable algorithm is derived to compute orthonormal bases for any deflating
subspace of a regular pencil hB- A. The method is based on an update of the OZ-algorithm, in order to
obtain any desired ordering of eigenvalues in the quasitriangular forms constructed by this algorithm. As
applications we discuss a new approach to solve Riccati equations arising in linear system theory. The
computation of deflating subspaces with specified spectrum is shown to be of crucial importance here.

Key words, generalized eigenvalue problem, Riccati equation, optimal control, spectral factorization

1. Introduction. The computation of deflating subspaces with a specified spectrum
has not received a great deal of attention until it was recently applied to the solution of
the optimal control problem of a linear discrete time system [5], [15]. Before the
development of reliable algorithms for the generalized eigenvalue problem [13], [16],
these problems were often reduced to an equivalent standard eigenvalue problem and
gave rise to the computation of invariant subspaces with a specified spectrum [8], [14],
[17], [21 ]. The matrix involved in this standard eigenvalue problem does not consist of
given data but has to be computed, which unfortunately requires inverses of possibly
ill-conditioned matrices. In [5], [12], [15] the use of a generalized eigenvalue problem
is recommended as a safer alternative, and attention is drawn to the absence of
appropriate software for computing deflating subspaces of a regular pencil. In this paper
we try to fill this gap, and we also exploit this new tool in a class of related problems
arising in linear system theory. We thereby develop a new approach to tackle these
problems in a numerically sound way.

In the rest of this section we briefly review some notions that we will need in later
sections. The material covered here can be found, e.g., in [13], [18], [19], [20].

Notation will be as follows. We use uppercase for matrices and lowercase for
vectors and scalars. R and C are the fields of real and complex numbers, respectively.
We use A* (resp. x*) for the conjugate transpose of a complex matrix A (resp. vector x)
and A’ (resp. x’) for the transpose of a real matrix A (resp. vector x). I1" 112 denotes the
spectral norm of a matrix and the Euclidean norm of a vector. A complex (real) square
matrix A is called unitary (orthogonal) when A*A I (A’A I). When no explicit
distinction is made between the complex and real case, we use the term unitary and the
notation A* for the real case as well.

Recently, more attention has been paid to the generalized eigenvalue problem
(GEP):

(1) Ax ZBx,

where B is not necessarily invertible but where the pencil AB-A is regular, i.e.,

(2) det (AB A) a 0.

* Received by the editors July 15, 1980. This research was supported by the National Science
Foundation under grant ENG78-10003 and by the U.S. Air Force under grant AFOSR-79- 0094.

t Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, Cali-
fornia 94305. Present address, Philips Research Lab., Av. Van Becelaere 2, Box 8, B-1170 Brussels,
Belgium.
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When the coefficients of the matrices A and B belong to C, there exist unitary
transformations Q and Z reducing the n x n pencil AB A to the upper triangular form

(3) O*(AB-A)Z=AJ-A=A
nn a

The ratios A ,/, are called the generalized eigenvalues of the pencil AB-A. The
set {Ax,... ,A,} is called the spectrum of AB-A and is denoted by A(B, A); it may
contain repeated elements. Notice that i ay be infinite (when , 0) but it is never
undetermined (i.e., A=0/0), since ii=bii=O implies det(A-)0 and hence
det (AB-A) 0. As a consequence the matrix ,B-,A is singular. The vectors x
satisfying

(4) (, b,A)x 0

are called generalized eigenvectors of AB-A corresponding to A. If the eigenvalue
A d,/, has a larger multiplicity than the number of independent solutions x of (4),
then one can define generalized principal vectors of AB -A corresponding to A. Since
we do not need this concept in the sequel, we do not go into further details about it.

In the real case the decomposition (3) also exists but involves complex matrices Q,
Z, A and B when A(B, A) contains complex elements. Under orthogonal trans-
formations Q and Z, AB-A can be transformed to the quasi upper triangular form

(5 O’(-lz=-A=

where the diagonal pencils I.-. have sizes d 1 or 2 and the . are upper
triangular. If d 1 then A(., .) is real (possibly infinite). If d 2 then A(.,
contains two (finite) complex conjugate numbers. The spectrum ol IB -A is the union
of the sets A(., .), as can be seen from an additional (unitary) reduction of (5) to (3).
An algorithm has been derived recently to obtain decompositions of the type (3) and (5)
in a numerically stable way [13]. When B I, (1) boils down to the standard eigenvalue
problem (SEP):

(6) Ax x.
It is readily verified that the decompositions (5) and (3) then reduce to the classical
Schur decompositions of the real or complex matrix A, respectively. We therefore call
(3) and (5) generalized Schur decompositions of the regular pencil IB -A. In the sequel
we drop the term generalized" when no confusion is possible from the context. The
notion of eigenvector in the GEP can be extended to the notion of debating subspace
of a regular pencil IB-A, satisfying

(7) dim (B+A) dim ,
where dim 5 denotes the dimension of a subspace . Let have dimension l, and
suppose that the first columns of the unitary matrices Q and Z, partitioned as

(8) Z [Zl [Z2], O [Ol IO2],
-l -l

span the spaces andA+BF, respectively. Then it follows from (7) that Q*2AZ1
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O’BZ 0, or

n--I --!

Conversely, if (8), (9) hold then the columns of Z1 span a deflating subspace according
to (7). For 1, is an eigenvector of AB-A corresponding to the eigenvalue
A(/I, ). For any l, A(/I,) is a subset of A(B, A) and is denoted as A(B, A)le
(the spectrum of AB-A restricted to f). The deflating subspace o is uniquely
determined by A(B, A)I when this subset is disjoint from the rest of A(B, A) ( is then
spanned by the eigenvectors and principal vectors corresponding to the spectrum
A(B, A)I). All this also holds for the real case. For the case B I, the definition (7) of a
deflating subspace reduces to the definition of an invariant subspace g of A, since
dim (+A) dim is equivalent toAc g. Notice also that in the SEP O is equal
to Z in (8), (9).

It follows now immediately from (9) that the Z-matrix in the Schur decomposition
(3) yields orthonormal bases for deflating subspaces of dimension 1 to n 1, since the
right-hand side of (3) has a block partitioning of the type (9) for 1, , n 1. This
also holds for the "real" Schur decomposition (5) for those that are conformable with
the block partitioning in (5), namely

(10) l= E d fori=l,...,k-1.
/=1

In this paper we consider the computation of a deflating subspace with prescribed
spectrum A(B, A)I {g, ’, gt}. From the above it follows that the first columns of
Z in (3) form an orthonormal basis for such a space if and only if the sets
{ d,/f),li 1,. , l} and {gli 1,. , l} are equal except for the ordering of their
elements. In the real case, this also holds for the matrix Z in (5) when satisfies (10). The
complex elements in {ggl 1,..., l} must therefore appear in conjugate pairs.

The problem thus reduces to obtaining decompositions of the type (3) and (5) but
with prescribed ordering of the eigenvalues occurring on the diagonal. In the next
section we show how to solve this problem by deriving a method to interchange the
order of the eigenvalues in the decompositions (3) and (5), which were previously
obtained by the OZ-algorithm. The method is proved to be numerically stable. In 3 we
apply this new tool to derive new methods for solving Riccati equations arising in linear
system theory. In these methods, deflating subspaces with specified spectrum (namely,
all the eigenvalues inside the unit circle or all the eigenvalues in the left half-plane) have
to be computed. In 4 we give some numerical examples.

:t. Reordering. It is clear that the 1 x 1 and 2 x 2 diagonal blocks in the decom-
positions (3) and (5) can be reordered in an arbitrary way by using a method to

interchange two consecutive blocks only. This idea was used, e.g., in the SEP to obtain
standard Schur forms with an arbitrary ordering of the eigenvalues [8], [17], [21]. The
method described hereafter can be viewed as a stable generalization of it to the GEP.
(An unstable generalization was attempted in [15].) We thus want to find unitary
transformations O and Z such that

A22J

(11b)
B22J
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where A(B11, A11)=A(J22,.,22) and A(B22, A22)=A(/11,11), and where the
dimensions d and dE are either 1 or 2.

Moreover, we want the transformations and Z to be numerically stable. In order
to prove this, we use a standard error analysis [23] of (possibly complex) transforma-
tions of the type

Y

where G is the (possibly complex) Givens transformation

(12b) G cg + sf 1,

constructed to annihilate ya. Let , (defining ) and be the computed versions of c, s
and , respectively, and let e be the machine precision of the computer; then a
backward error analysis yields (for a standard construction of such transformations)

(13) *(y + e,)= [], ,[e,[[ 6. [,y[[.

Here we assume that the 0 element is not computed but put equal to zero. When
performing the transformation G*z for an arbitrary vector z, we have, similarly,

(14) d*(z + e)

In the sequel denotes the class of matrices representing Givens transformations
between columns or rows and ]. We prove that, by using transformations in this class
lor the reduction (11), the backward error can be bounded with respect to

(15) A max (IIAII:,

Case I. dl d2-- 1. This may occur in both decompositions (3) and (5). We thus
assume that the matrices can be complex. We have the following configuration:

(16a) O’AZ=O’[al (/121Z [/(10 a22j a22_1

0 b22J b22J

We can assume without loss of generality that Ibl => lanai (if this is not the case the role
of A and B should be interchanged). A construction of Q and Z such that the order of
the eigenvalues is interchanged follows then immediately from (8), (9). Indeed, we
have A(bE2, a22) A(/I, 1) if the first column zl of Z is an eigenvector of AB-A
corresponding to A(bE2, a22) or

(17) (a22B-b22A)Z=(00l *]
Notice that the last row of H (azzB- bzzA) is zero:
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In order to obtain (17), we thus can choose a Z 12 annihilating X1 in (18). It follows
from (17) that Bz and Az are parallel, and (16) is then obtained by choosing a Q (12
annihilating x2 in BzI"

(19) Q*BZ Q
x2 0

The assumption Ib22]/la221-1/a11/111[ -> 1 implies that /11 # 0, and Q*Azl can then
only be parallel to Q*Bzl if Q*AZ is indeed upper triangular.

We now prove the numerical stabil,ity of the method. As in (13), (14), computed
elements are denoted by an upper tilde (.). Using the analysis (13) (14) above, it is easy
to prove that all the ei, 1,.. , 9 below are of the order of the machine accuracy e of
the computer.

An error analysis of (17), (18) yields

(20) (a22B b22A +F)Z 0

and of (19) yields

for IIFII e lla=n b=AIl,

(21) 0*(B+Eo)2 [/a /az]
0 /;zz-I for IlEollz- e2z.

We prove that there also exists a backward error Ea such that

(22) (*(A "[" Ea)2 --[1 12] for
d22J

An error analysis of Q*AZ using (14) yields

(za 0*(A [ 11 II  ll =21 22A
We only have to prove that 21 8 A in order to obtain (22) by putting 21 equal to zero.

Let us therefore denote the (2, 1) elements of O*(aEEB-bE2A), O*B2 and
O*A by , 2 and 3, respectively. They clearly satisfy the relation

(24) a22" 1’/2- b22" 3 ’1/1.

From (20), (21) and (23) it follows that

(25b) Ir/2l-< 6A

(25c) [211 -< Irt3[ + eTA.
Using (25) and the assumption Ibzzl >= lazal in (24) we obtain

(26a)
Ir/3l <-- In21 la2d/Ib2al + Ir/ll/Ibz21

<- e6A + es{A + ZX} e,a,,
(26b) la= l ’ (E8 "q- ET)m E9m.
This shows the importance of the assumption [b2z[ >= la=l in order to guarantee the
stability of the algorithm. In case Ib  .l < [a221, (2 is constructed to reduce A to triangular
form instead of B, and a similar analysis is then possible.
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Case II. d 2, d2-- 1. We now have the following configuration (all matrices are
real)"

(27a)

(27b)

Q’AZ Q’ a21 a22 a23/Z 0

0 0 a33-J 0

Q’BZ =Q’ 0 b22 b23[Z 0
0 0 ba3A 0

We assume that Ib331 la331. If this is not the case, we can always interchange the role of
A and B by transforming the first two columns of A and the last two columns of A in
order to annihilate a21 and 32 and to create b2 and/32.

It follows again from (8), (9) that A(b33, a33) A(/I, t11) if the first column Zl of Z
is an eigenvector of AB-A corresponding to A(b33, a33). Therefore we have (with R
any invertible row transformation):

(28) R’(a33B b33A)Z [!
Notice that the last row of H (a33B b33A) is zero and that we can choose R a2 to
annihilate the (2, 1) element of H. We then have

(29) R’H 0 Xl

0 0

In order to obtain (28) we thus can choose Z ZI" Z2, with Z1 (23 and Z2 (12
annihilating x and x2, respectively. Q is then constructed to have/ Q’BZ in upper
triangular form. We therefore take Q Q Q2, where Q16 23 is chosen to annihilate
the (3, 2) element created by Z1 (i.e., Q’IBZ1 is upper triangular) and where Q2 6 (12 is
chosen to annihilate the (2, 1) element created by Z2 (i.e., QQBZxZ2 is upper
triangular)./ now satisfies (27b). Since Ib331/la331- 1/7111/11--> 1, we have/lx 0 and
because of (28), Q’Azl and Q’Bz are parallel. This ensures that Q’AZ also
satisfies (27a).

We now prove the numerical stability of the method. Using (13), (14) it can be
checked that all the ei, 1, ., 4 below are of the order of the machine accuracy e. An
error analysis of (28), (29) yields

(30) /’(a33B baaA +F)222 0
0

for I}Fll2 e lla33B b33AI]2,

and of the constructed product Q2Q’BZZ2 yields

(31) b23/ for IIEb I]2 e2 A.
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We prove that there also exists a backward error Ea such that

11 12 131(32) 0.0(A +Ea)12= 0 g22 ti23| forllEll.= eaA.
0 32 t33..I/

An error analysis of QEQAZ1Z2 yields

(33) 00 (A +E)212= 21 22 23/ for IIEII-- E4m.
L31 32 33/

We only have to prove that the elements il, 2, 3 are e-small, in order to obtain (32)
by putting il 0, 2, 3. This is easily proved using similar reasoning to (24)-(26).
Here again the assumption 1b331 >--1a331 is crucial in the proof of backward stability.
Therefore, in the case [b33[ < la331, the roles of B and A have to be interchanged.

Case III. dl 1, dE 2. This case is dual to the previous case and can be reduced
to it by pertransposition (transposition over the antidiagonal).

Case IV. dl-" dE "-2. A detailed configuration of (11) is then

41  14-1all a12 a13 al 11 a12 313

24(34a) Q,AZ=Q,[a2x a2 a23 a24[ a2 a22 23 =,
L 0 a33 a341Z= 0 ’33 ’34

0 a43 a44d 0 fi43 fi44

(34b) O,BZ=o,IO0 b ba b4Z= :o o

where all the elements are real and B and are invertible. In order to have
A(B, A) A(, ) the first two columns of Z must span the deflating subspace
ol IB-A corresponding to A(Ba,A) or, equivalently, the two (complex) eigen-
vectors corresponding to the eigenvalues I and I of A(B, A). Such a Z also
satisfies

0 0

(35 
0
0

and could be constructed through (35). Unfortunately, this approach is not recom-
mended from a numerical point of view because of the occurrence of B-1 and of the
product (A2I-B-1A)(,2I-B-1A). An error analysis of (35) would yield a negligible
relative error for this product but not for A and B individually.

A different approach is therefore recommended here, namely the double shift
QZ-step. Implicitly, this is a double shift QR-step working on the matrix AB-1, but the
actual implementation avoids the construction of AB-1 and works instead directly on B
and A [13]. For our 4 4 pencil (34) the scheme can be implemented economically with
Givens rotations"

Construct Q1 (23 and Q2 (12 according to the "double shift technique", and
construct Z123 and Z2(12 such that QQBZ1Z2 is upper triangular.
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QQ’AZxZ2 and QQ’BZ1Z2 then look like

(36)
x x x x

x x x 0 x

3 X5 X 0 0

Construct 03 (434, O4 (23 and O5 34, annihilating x3, x4 and xs, respec-
tively in (36). Construct Z3 (-34, Z4 (-23 and Zs J34 such that Q’BZ, with O
0102030405 and Z =Z1Z2Z3ZaZs, is upper triangular. Q’AZ is now upper
Hessenberg and Q’BZ upper triangular. This form is clearly maintained by a OZ-step.
In order to obtain (34) we want moreover that 31 0 and A(/I., A21)= A(B11, All).
According to the properties of the double shift method [13], this will be the case when
{A x, A} A(BI, A) is chosen to determine the double shift (i.e., Ox and Ol), and if in
addition a32 0. Since in (34) the latter is not satisfied, we first perform a OZ-step with
random shift such that a31 0, and we then perform a second OZ-step with double shift
based on {h , X }.

The numerical properties of the OZ-step are discussed in [13]. The algorithm is
backward stable, but under the presence of rounding errors the element g31 may not be
negligible. Several OZ-steps with double shift {h 1, 1} are then performed, and 31 is
shown to converge very fast to zero 13]. Only in pathological cases is more than one step
required to obtain 1t32

Operation count. The combination of a pair of left and right Givens trans-
formations Q, Z, requires approximately 12n operations (1 operation 1 addition + 1
multiplication). The number of operations for the different cases is then (for Case IV we
assume only 2 QZ-steps are needed)"

Case I: 12n.
Case II and III" 32n (average).
Case IV" 120n.

Since Cases II and III correspond to two interchanges of eigenvalues and Case IV to
four interchanges, we finally have an average of 20n operations for interchanging two
adjacent eigenvalues.

When a deflating subspace with a specified spectrum {/z 1,"’,/Xl} has to be
computed and a QZ-decomposition is already available, then at most (n l) <= n214
such interchanges are required (namely when all/xg, 1, ", are in the bottom right
corner). A reasonable estimate is thus 5n 3 operations for computing a specific deflating

3subspace from a QZ-decomposition, while the latter requires approximately 25n
operations. In order to obtain all possible orderings of eigenvalues in the QZ de-
composition, and thus all possible deflating subspaces (if no eigenvalues are repeated),
n! such interchanges are required [9]. That is to be expected since it is a combinatorial
problem.

3. Rieeati equations. In this section we apply the above ideas to the solution of
certain Riccati equations arising in linear system theory. We first briefly restate the four
problems we will focus on, and we refer to the literature for a more complete discussion.
We will everywhere assume that the matrices involved are real, since this is usually
the case in practice. Extensions to the complex case are trivial.

Problem I. Optimal control: continuous time case [11][12][24]. Given the stabil-
izable system

(37) (t) A,,x(t) + B,,,u (t),
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find the control u(t)=-Kx(t) minimizing the functional

(38) J- Jo [x’(t)Qnnx(t)+ u’(t)R,,,,u(t)] dt,

where (A, Q) is detectable, Q _-> 0 and R _-> 0. When R is invertible this problem reduces
to the computation of the unique nonnegative definite solution P of the algebraic
Riccati equation

(39) Q +A’P +PA -PBR-1B’P O.

K is then equal to R-IB’P. Equivalently [12], one can compute the invariant subspace
s of the matrix

(40) H
-A’

where A(H)I contains all the stable eigenvalues (i.e., Re (A) < 0) of H. If [-] is a basis
for this subspace, then P X2X-1.

Problem II. Optimal control problem: discrete time case [5][7][15]. Given the
stabilizable system

(41) Xi+l Fnnxi d- GnmUi,

find the control ui -Kxi minimizing the functional

Qnxi + u iR,,,,ui],(42) J=
i=0

where (F, Q) is detectable, Q >-0 and R >-0.
When R is invertible [7], this problem can again be converted to the computation

of the unique nonnegative definite solution P of the (discrete time) algebraic Riccati
equation

(43) P F’PF-F’PG(R + G’PG)-G’PF + O.

K is then equal to (R + G’PG)-1G’P. This is also equivalent to solving for the "stable"
deflating subspace s of the pencil [5][15]

(44) A[ GR-

where this time the stable eigenvalues are those inside the unit circle. If [xx] is a basis for
s, then P XeX[.

Problem III. Spectral factorization: continuous time case [2]. Given an m x m
"positive real" rational matrix, Z(s), i.e.,

(45) Z(s) analytic and Z(s)+Z*(s)>=O in Re(s)>0,

find a "spectral factorization"

(46) Z(s) + Z’(-s) R (s) R’(-s),

where R (s) has only stable poles and zeros (i.e., Re (s)< 0).
When Z(s) is given by a minimal realization C(sI,,-A)-B +D and (D +D’) is

invertible, then this problem reduces to the computation of the unique positive definite
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solution of the algebraic Riccati equation [2]

(47)
B(D + D’)-IB’ + P[A -B(D + D’)-1C]’

+ [A B(D +D’)-C]P +PC’(D + D’)-CP O.

This is again equivalent to the computation of the stable invariant subspace s of the
matrix

[A-B(D+D’)-IC B(D+D’)-B
(48) H=[ _C,(D+D,)_XC _[A_B(D+D,)_C],].

Problem IV. Spectral factorization: discrete time case [1][4]. Given an m x m
"positive real" discrete time matrix Z(z), i.e.,

(49) Z(z) analytic and Z(z)+Z*(z)>=O for [z[>l,
find a spectral factorization

(50) Z(z) + Z’(z -) R (z) R’(z -1)
where R (z) has only stable poles and zeros (i.e., inside the unit circle). Again, when
Z(z) is given by a minimal realization H(zln -F)-G +J and (J +J’) is invertible, the
problem can be reduced to the computation of the unique positive definite solution P of
the (discrete time) Riccati equation [4]

(51 P FPF + G FPH J +J HPH G HPF

In analogy to (43), (44), one can prove that this is equivalent to computing the stable
deflating subspace s of

I
(5) X

0 F’-H’(J +J’)-O’ t -H’(J +J’)-IH

This, however, was not found in the literature.
Note that in order to be able to write down the Riccati equations, we need certain

matrices to be invertible. This also holds for the equivalent SEP’s and GEP’s, since they
are derived from the Riccati equations. Yet, if the matrices to be inverted happen to be
badly conditioned, each of these approaches may encounter serious numerical
difficulties when computing these inverses. We now present a way to circumvent this by
an embedding technique. If D is invertible in the pencil

rAE-A }’(53)
kFF_ c }

then

(54) [Io -BD-]I [AE-AAF_ C DB] [ A(E-BD-F)-(A-BD-C)AF- C ]"
Let U be an orthogonal transformation reducing [g] to [] with/ m x m and invertible.
Partition U conformably with (53); then we have

(55) [U11 U121 AE-A BD] h 0
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Since the rows of U111U12] and [II- BD-1] both are a basis for the left null space of [o],
they are related by an invertible row transformation which clearly must be Ul1"

(56) U111II-BD-1] l-Ual[ U2]
From (54) and (55) it then follows that

(57) UlX[A(E-BD-IF)-(A-BD-’C)]=AI-.
Therefore the deflating subspaces ofh A and of A(E BD-IF) (A BD-1C) are
the same. According to (7), deflating subspaces of a regular pencil are indeed not
affected by an invertible row transformation on the pencil. This technique was also
applied in [22] (with E I and F 0) for developing a stable way to compute the
deflating subspaces of hl- (A -BD-C) or, in other words, the invariant subspaces of
A-BD-xC. This can now be applied to the above four problems. In each of them the
pencil (53) takes the form (we always have p 2n)

Problem I:

(58) h 0 I 0 -(2 -A’ 0
_0 0 0 0 B’ R

Problem II:

(59) A 0 F’ 0 -O I 0
0 G’ 0 0 0 R

Problem III:

(60) h I 0 -A’ C’
0 0 -B’ D+D’

Problem IV:

(61) h F’ 0 I -H’
G’ 0 0 -(+’)

For each of these pencils a 2n x 2n pencil h"- fi- can thus be derived via (55), and its
stable deflating subspace s is the one required in the above four problems. This
procedure does not involve the inversion of a possibly ill-conditioned matrix. Only
orthogonal transformations are used as well in the construction of AE-A as in the
computation of the deflating subspace s. This guarantees the numerical stability of the
method. Unfortunately this is not completely satisfactory yet, since the performed
errors do not necessarily respect the structure of the pencils (58)-(61). An (unsuccess-
ful) attempt to restrict the orthogonal transformations to those respecting the structure
of the matrices they act upon can be found in the literature for Problems I and III, but in
the formulation (40) and (48), respectively [14].

An important remark here is that in the new formulation (58)-(61) no inverses
occur any more, and that perhaps this new formulation also gives the correct answer
when these inverses do not exist. This would follow from limiting arguments if both the
exact solution of the problem and the computed solution from the GEP’s (58)-(61) are
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continuous. This is true for the eigenvalue problem if the spectrum A(/,/)[ is
separated from the rest of the spectrum h/-A [20], and this holds under some weak
assumptions in each problem (stabilizability, detectability, positive realness). The
continuity of the solution R (s) of Problem III is discussed in [1, p. 243]. It also holds for
the more general "minimal factorization problem" [3] for which the above embedding
technique was originally derived [22]. It is therefore reasonable to assume that it also
holds for the other three problems. This is still under current investigation.

During the elaboration of this research, the author’s attention was drawn to the
work of A. Emami-Naeini and G. Franklin [6]. Via an independent approach they
arrive at the same form (59). No proof is provided, though, that the method also works
for singular R. The authors of [6] are presently working on that problem.

4. Numerical examples. In this section we give two examples illustrating the
reordering of eigenvalues in order to compute a certain deflating subspace with
prescribed spectrum. We use a PDP 11-34 computer with double precision. The
machine precision is then e 1.5 10-17. Two routines are used for the reordering of the
Schur form [25]. EXCHQZ exchanges two adjacent blocks in a real Schur form and
ORDER uses this routine to reorder all the eigenvalues inside the unit circle to the top
or bottom of the real Schur form, depending on the value of a parameter IFIRST. This
last routine is easily adapted for any region which is symmetric with respect to the real
axis. This condition is necessary because the pencils considered are real and complex
conjugate eigenvalues need thus to stay together in the real Schur form.

Example I.

o
0 .:3

0 11-.2
A-AB

(62)

0 0 0 0 0 1

.2 4 6 0 0 0

.31 0 0 0 .5 0

0 0 0’,.5’,0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

4 2.5

-10 4

0 0 0 0 0 0 0

0

-A

-1 0 0 0 0 0 0 0

1 0

0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0 0

0

The first four eigenvalues {0, .3-j.2, .3 +f.2, .5} are outside the unit circle. The last
four ones {, 4-/’5,4+5, 2} are outside the unit circle. Calling ORDER with
IFIRST 1 interchanges the order of these sets of eigenvalues. The first four columns of
the transformation Z required for this then span the unstable subspace u of A- AB;
see Table 1.

When again calling ORDER but now with IFIRST -1, we retrieve the ordering
of A- AB and the four first columns of the updated Z look like Table 2.

This is e-close to the real stable deflating subspace s of A AB, which is spanned
by [o,]. This result is to be expected because of the numerical stability of our method and
because the space Ts of A -AB is well-conditioned. When the gap between the spectra
A(B, A)I, and A(B, A)[ is large, both spaces W and , are indeed well-conditioned
(see [20]).

Example II. Consider Problem II with

[lo] [o(63) F= G= Q=
0
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The pencil (59) then looks like

(64)

1 0 0 0 0 2 -1 0 0 -1
1 0 0 0 1 0 0 0 0
0 2 1 0 0 0 1 0 0
0 -1 0 0 0 -1 0 1 0
0 1 0 0 0 0 0 0 0

An orthogonal row transformation can then be constructed in order to construct a
deflated pencil h-/ following (55):

(65)

1 0 0 1 0 0 0

’ 0 0 2 0 1
o 0 1 0 0

The QZ-algorithm permutes the two last columns of (65) to obtain the real Schur form

(66)

-0 1 0 0 1 0 0 0

h
0 0 1 0 0
0 0 0 0 0

which displays the eigenvalues {o, , 0, 0}. In order to obtain the stable subspace s of
h-A we reorder these eigenvalues and obtain, as a basis for

(67)

0 -4-/2

o
+

o
We then find, up to machine accuracy, the answer P L One can check that this is the
correct answer to Problem II by using another method [7]. This example illustrates that
the embedding technique gives a correct result even when R is singular. Moreover, the
problem is perfectly well-conditioned as well for the construction of h-A, as for the
computation of s and P.

We finally want to draw attention to the fact that the number of operations
required for the construction of h-A from the pencils (58)-(61) is comparable to the
amount of work required to construct the pencils (40), (44), (48), (52). From then on, the
new approach takes the same amount of computations for Problems II and IV and only
slightly more (less than the double) for Problems I and III. The stability of the method
and its better conditioning therefore make this new approach particularly attractive.

Acknowledgments. I want to thank A. Emami-Naeini, G. Franklin and A. Laub
for drawing my attention to this problem and for several helpful discussions. A.
Emami-Naeini also suggested Example II.
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ON THE IMPLICIT DEFLATION OF NEARLY SINGULAR SYSTEMS
OF LINEAR EQUATIONS*

G. W. STEWART

Abstract. In solving the linear system Ax b when A is nearly singular, it is often appropriate to work in
a coordinate system in which the singularity can be easily removed. When A is large and sparse, an explicit
transformation of the system cannot be made, since it will destroy the sparsity of the system. In this paper, an

algorithm similar to the method of iterative refinement for linear systems is given and its numerical properties
described.

Key words, rank degeneracy, singular value, sparse matrix, iterative refinement

1. Introduction. In this paper we shall consider the problem of solving the system
of linear equations

(1.1) Ax=b

when the matrix A is nearly singular. When A is or order n and rank (A) n 1, this
problem admits a simple mathematical solution. Let u and v be left and right null
vectors of A (i.e., A’u =Av =0) of Euclidean norm unity, and let U and V be
orthogonal matrices whose last columns are the null vectors u and v. Then it is easily
verified that

0

where A ll is a nonsingular matrix or order n 1. Write

(1.2) VTx=[xl]X2

and

(1.3) UTb=[bl ]b2

where xl and bl are of order n 1. For the system (1.1) to be consistent, the vector b2
must be zero, in which case the vector

" V[A- b ]
is a solution of (1.1). In fact, it is the solution of smallest Euclidean norm.

In practice, the matrix A will seldom be exactly singular and the vectors u and v
will be only approximate null vectors. This means that UT"A V will have the form

[AI a2],(1.4) U’AV a2 a22-1
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where a12, a21 and a22 are small. In many applications (for example, in the numerical
treatment of bifurcation problems [4] or of nearly decomposable Markov chains [6]), it
is appropriate to ignore these small quantities and compute the approximate solution Y
given above. We shall call the results of this procedure the deflated solution of the
system (1.1).

As long as A is a dense matrix whose elements can be contained in the high speed
storage of a computer, the process just outlined presents no particular difficulties. When
A is large and sparse, however, the process cannot be carried out, since the matrix A 11

of (1.4) will in general no longer be sparse. Using sparse matrix techniques (e.g., see [2]),
it may be possible to compute a solution of (1.1). Thus we may raise the following
question" given approximate left and right null vectors u and v of A, can we use the
ability to solve (1.1) to obtain the deflated solution of (1.1) ? The answer is yesmusually;
the rest of this paper is devoted to describing an algorithm for computing the deflated
solution.

In what follows we shall use the vector 2-norm defined by [Ix[I2 x rx and the
subordinate matrix norm defined by

IIAII sup I[Ax II.

2. The algorithm. It will be convenient to phrase the algorithm in terms of
projectors associated with the vectors u and v. Let

Pu I-tT TPv =I-vv

The matrix P. (Pv) projects a vector x onto the space orthogonal to the vector u(v). It is
easy to verify that the deflated solution of (1.1) is the unique vector satisfying

(2.1a) P.APv Pub

and

(2. lb) Pv :.

We have indicated that when A is large and sparse it may be impossible to solve
(1.1) directly. However, under appropriate conditions we can solve it approximately.
This suggests that we use some form of the method of iterative refinement for linear
systems [3], [5], [6], a suggestion that leads directly to the following algorithm:

1. x=0

2. loop

(2.2) 1. r =P,(b-Ax)

2. SolveAd=r

3. xx+Pvd
The conditions under which this algorithm works are stated in the following theorem.

THEOREM 2.1. Let UAV have the form (1.4). Suppose that A11 is nonsingular
and that

(2.3) a2- aflA-al O.
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Then A is nonsingular, so that algorithm (2.2) is well defined. Let
TA-)a12a21

(2.4) F -
If []FII < 1, then the sequence generated by algorithm (2.2) converges to .

Proof. If we make the substitutions x Vx, b vTb and A UTA V, then x, b
and A assume the same form as the right-hand sides of (1.2), (1.3) and (1.4). Moreover,
Pu and Po become diag (In-1 0), so that operating on a vector x by either P, or Pv
amounts to setting the last component of x to zero.

To prove the first assertion of the theorem, note that

(2.5) (AT11 a12] [ I ] [A011 a12

a21 a22 a21Axl a22 alAal2
If 8 0, then (2.5) exhibits A as the product of two nonsingular matrices.

To prove the second assertion of the theorem, note that any vector x generated by
(2.2) satisfies Px x, or equivalently,

For such an x we have

r--
0

From (2.5) it is easily seen that

(I +f)A-((bl-AllXl) ]
T -1d= _8_1a21Ax1(bl_Allx1)l

Hence, if we denote by x* the vector produced at step 2.3 of (2.2), we have

x 1" X + (r +F)( Xl), x* 0.

Hence

x x* F( xx),

or

II-x*ll IIFIIIl,-xlll.
Since IIF]I < 1, the sequence generated by (2.2) must converge to .

It is important to have some idea of when the condition IIFII < 1 is satisfied. We shall
now show that what is required is that u and v be good approximations to the singular
vectors of A corresponding to the smallest singular value. Specifically, by appealing to
the singular value decomposition [5, Chapt. 7], we may assume without loss of
generality that A has the form

where

X, diag (0"1, 0"2,’’’, 0"n-1)

and 0"1 >-- 0"2 >- ->- 0".-1 --> 0" > 0. The optimal approximate null vectors of A (in the
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sense that IIAolI and IIA ull are minimized) are the unit vectors 1, and 1,. If we accept
approximations

T T T T 1),u =(eu 1), v =(e

then U and V are approximated up to second order terms in e, and eo by

TU-
-eT

V
-e

It is then easily verified that

[ E+ree
r

UTAv [e,E-o’e,,T T

Thus, if we set

(2.6)

we have

(2.7)

max {lleul[, Ilell} < 1,

After some manipulation, we get

4eZIIA 11 (A)

where (A,,)= IIA,IIlIA-?II is the condition number of A ,. Hence, if

(2.8) 4’ )-, la=le<= t (A1, IIAI,II’

then IIFII < 1.
The condition (2.8) oes not put severe restrictions on the accuracy of u an v. For

example, if laEzl/llAxxll 10-5 an K(A11)"- 102, then (e.8) requires < .. 10-4 for
convergence. Actually, in this case it is more realistic to replace the factor 10y 1/2 to give
e < 2.24.10-4 (cf. (2.7)). In any case, we only require four-digit approximations to the
minimal singular vectors to get convergence.

3. Practicalities. In this section we shall discuss some of the practical problems
associated with the algorithm described in the last section. The first problem is, of
course, to obtain approximate null vectors u and v. For the sparse systems contem-
plated in this paper, the vectors can be obtained by a variant of the inverse power
method [8]. In brief, one starts with a vector u0 and iterates according to the formulas

1. Ai+l ui,

2. /)i+1--"

3. ATi+ Vi+a,

4. Ui+I a,+l/lla,+lll.

The iteration requires nothing more than that one be able to solve linear systems
involving A and A T. If A is within rounding error of a singular matrix, then at most two
iterations will usually suffice to produce the vectors u and v. As A moves away from
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singularity, more iterations will be required. In any case, the final result will be a pair u
and v which satisfy (2.6), where e is of the order of the rounding unit

The computation of the projections required by the algorithm can be accomplished
directly from the definitions of P, and Pv. Alternatively, one can use Householder
transformations as described in [5, Chapt. 6]. The latter method has the advantage that
no matter how small P,x is, it will be almost exactly orthogonal to u.

In the first step of the iteration, the vector x is zero so that r Pub. If a22 is large
enough, the solution produced by this step will be as accurate as the condition of
warrants. If a22 <- eM, however, more iterations may be required, and it is because of this
possibility that we have phrased our algorithm in the iterative form of (2.2). Seldom
sliould more than two or three iterations be required.

We shall not give a formal analysis of the effects of rounding error on (2.2), since
such an analysis closely parallels the treatments in [4] and [6] for iterative refinement. In
summary, there are two factors affecting the performance: the errors made in solving
the system Ad r and the errors made in calculating b-Ax and the various pro-
jections. As far as the first is concerned, it follows from standard rounding error
analyses [1], [7] that the computed vector d satisfies (A + E)d r, where E is a small
matrix whose size depends on the details of the way in which the solution was obtained.
The presence of this matrix E may slow the convergence, but it will not affect the final
accuracy of the results. In sparse matrix applications where some form of threshold
pivoting has been used, E can quite easily be large enough to slow convergence, another
reason for the iterative form of (2.2).

The accuracy to which b Ax and the projections are calculated limits the accuracy
attainable in x. If these are calculated in single precision, then Y will be determined to a
relative accuracy of order e,llAXlll. To get more accurate answers, the vectors b-Ax
and the projections must be computed to higher precision. However, we note that doing
this will in general not make sense unless u and v have also been determined to high
precision.
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BALANCING THE GENERALIZED EIGENVALUE PROBLEM*

ROBERT C. WARDS

Abstract. An algorithm is presented for balancing the A and B matrices prior to computing the
eigensystem of the generalized eigenvalue problem Ax ABx. The three-step algorithm is specifically
designed to precede the QZ-type algorithms, but improved performance is expected from most eigensystem
solvers. Permutations and two-sided diagonal transformations are applied to A and B to produce matrices
with certain desirable properties. Test cases are presented to illustrate the improved accuracy of the computed
eigenvalues.

Key words, eigenvalues, balancing, scaling, diagonal transformation, generalized eigenvalue, graded
matrix, QZ algorithm

1. Introduction. Generalized eigenvalue problems consist of determining scalars
and corresponding n 1 nonzero vectors x such that the equation

(1) Ax ABx

is satisfied, where A and B are given n n matrices. These problems arise in such
diverse areas as natural frequency and buckling analysis of structures, the application of
molecular orbital theory in quantum chemistry, the investigation of regulation and
servomechanism design by time-invariant control systems, and economic analysis of
energy decisions.

The only efficient, stable, general purpose algorithms for solving generalized
eigenvalue problems are the OZ-type algorithms introduced by Moler and Stewart [5]
and extended by Ward 11 ]. These algorithms reduce A and B simultaneously to upper
triangular matrices TA and TB such that

TA=QAZ and TB=QBZ,

where O and Z are products of elementary unitary transformations. The problem
TAW ,Tnw is equivalent to Ax ,Bx in that they have the same eigenvalues and their
eigenvectors are related by the equation x Zw. If we denote the ith diagonal of Ta by
ce; and the ith diagonal of TB by/3i, the eigenvalues are given by Oli/i if there are no zero
values of/3i. A zero value of ji with a nonzero value of ai merely implies that the
corresponding eigenvalue is infinite. A zero value for both /3 and c implies that
det (A-,B)=0; thus, for any value of there exists a nonzero vector x such that
Ax )tBx. We will formally express the eigenvalues as oi/, always implying the above
consequences when i is zero.

The OZ-type algorithms applied to generalized eigenvalue problems having a wide
range in the magnitude of the elements in the A or B matrix frequently produce a’s and
/3’s which also have widely varying magnitudes. When the smaller c’s and /3’s are
primarily determined by the smaller elements in A and B, respectively, such as in
graded matrices, those c’s and/3’s normally have large relative errors independent of
their sensitivities, as a result of interaction between the smaller and larger matrix
elements. Similar inaccuracies in the solution of the standard eigenvalue problem
Ax &x have been greatly reduced by the development of an algorithm by Parlett and
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Mathematical Sciences Research Program, Office of Energy Research, U.S. Department of Energy, under
contract W-7405-eng-26 with the Union Carbide Corporation.
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Reinsch [7] for balancing the A matrix. Their algorithm determines a diagonal
similarity transformation which reduces the magnitude range of its elements while it
reduces the norm of A.

In this paper we present an algorithm for balancing the matrices in the generalized
eigenvalue problem by permutations and two-sided diagonal transformations. The
algorithm is specifically designed to precede the OZ-type algorithms, but improved
accuracy is expected from most eigensystem solvers. The scaling strategy is discussed in
2, and the details of the three-stel algorithm are given in 3. The test results are

presented in 4.

2. Determination of scaling strategy. Instead of solving the desired problem
represented by (1), we are usually required to solve a "nearby" problem given by

(2) (A + G)x A(B + H)x,

where G and H represent data error matrices for A and B, respectively. A OZ-type
algorithm given this nearby problem computes the exact eigenvalues of

(3) (A + G + Seo) (B +H + Teo)Y,

where IlSll<=f(n)llA + GII, IITII g(n)llB + nil, 0 is the basic computer roundoff error
and the functions f and g are polynomials of modest degree (see Ward [10]). Using a
perturbation analysis similar to Wilkinson [12, pp. 64-69], we find that for a simple
eigenvalue Ak of (1) there exists an eigenvalue of (3) such that

y(G AH)xk y(S AkT)x
(4) -A #Bx + e0+ O(eg),

y yBXk
where Xk and Yk are respectively the right and left unit-length eigenvectors associated
with Ak. Note that the first term in this error expression is a result of the data error
matrices G and H and only the second term is a result of the computation errors made
by the algorithm. Also note that there are two factors which affect the accuracy of k:
the sizes of the perturbation matrices as reflected in the numerators above and the
magnification of this effect by the eigenvalue sensitivity factor (y 7BXk)-I.

If we scale the rows and columns of (2), the resulting generalized eigenvalue
problem becomes

[D(A + G)Dz](DIx) h [D(B +H)D2](D-lx),
where D and D2 are positive diagonal matrices. A QZ-type algorithm applied to the
scaled problem computes exact eigenvalues of

(5) [DI(A + G)D2 + Ueo](D) [DI(B +H)D2+Veo](Dl),
where uII--< )(n)l191(A + G)D211 and vii--< (n)llO(B / n)D211, For the simple eigen-
value Ak of (1), there exists a computed eigenvalue k of the scaled problem such that

(6) -A y(G-AH)x yD-( (U-AkV)Dax
y’BXk + + 0()

yBXk o

Comparing (4) and (6), we notice that scaling has no effect upon the error induced
in the eigenvalue by the data error matrices G and H. Hence, in the remainder of this
paper we will refer to the given problem (2) using the standard terminology Ax ABx.

The scaling strategy should be chosen strictly upon the effect of the computation
errors made by the algorithm; that is, D1 and D2 should be chosen such that
yD-( (U-AkV)DIXk is minimized. Unfortunately, U, V, Ag, Xk and Yk are unknown
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at the time that the scaling must be performed. The problem is further complicated by
the fact that U and V are dependent upon D1 and D2. A scaling strategy based upon
this minimization appears intractable.

If we assume that all the elements of U are of the same order of magnitude, which
would be slightly larger than the maximum element in D1AD2, and similarly for V, (5)
immediately suggests a potential scaling strategy. This strategy would be to scale all the
elements in A and B to the same order of magnitude. Thus, the perturbations in the
elements of the scaled matrices caused by the computational errors would be of the
same relative magnitudes, preventing possible loss of extreme accuracy in the smaller
matrix elements. It should be noted that the above assumption on U and V would be
the usual situation, although exceptions can be easily contrived.

Let us consider the effect of this strategy upon the error in the computed eigenvalue
as given by (6). If we denote the diagonal elements of D1 by ri and the diagonal elements
of D2 by cj, the expression ]yffD-1 (U--AkV)Dlxkl with our assumption on U and V
now becomes bounded by

O[(maxlriAiicA)+lAk] (max lriBi,ci[)][ .. I(Yk)/I][ I(xk)il],
i,] i,] l’i Cj _!

where 0 is a "small" positive scalar greater than 1. If a small eigenvalue Ak is primarily
determined by the smaller elements in A and B, the components of Yk and the f
components of Xk corresponding to the small Aij’s and Bii’s will be much larger than the
other components of Yk and xk, and the ri’s and c’s corresponding to these small
elements will be larger than the other diagonals of D1 and DE. Thus, the above
expression is smaller than in the unscaled (ri c 1) problem. All the components of
the left and right eigenvectors corresponding to the large eigenvalues will likely be of
the same order of magnitude, and the above expression will not drastically change from
the unscaled problem.

Our scaling strategy is then to scale A and B so that the magnitude of each of their
elements is as close to unity as possible. (Unity was chosen since scaling by a scalar has
no effect upon generalized eigenvalue problems and it simplifies the resulting mini-
mization problem as discussed in 3.2.) This strategy results in equalizing the roundoff
errors occurring during the eigensystem computation, which is similar to the strategy
espoused by Dongarra et al. [3] for scaling the coefficient matrix before solving a system
of linear equations.

3. Algorithmic details. The balancing algorithm consists of three distinct steps
designed to increase either the efficiency or the accuracy of the eigensystem solver
which follows. Each step will be discussed and analyzed separately. The Fortran code
consists of a driver routine which calls separate routines for performing each of the
three steps. A similar arrangement exists for back-transforming the computed eigen-
vectors to those of the original system.

3.1. Step 1. Reduce the order. The first step consists of determining permutation
matrices P1 and P2 such that the permuted matrices have the block structure indicated
below:

(7) P1AP2 A22 A23l, P1BP2-- B22 B23
0 A33_] 0 B33

where A 11, A33, Bll, and B33 are upper triangular matrices. This step is analogous to
the first step in Parlett and Reinsch’s algorithm. If we denote the diagonals of A 11, A33,
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(1) (3) (1) and fl(3) respectively, the eigenvalues of Ax.= ABx areBlX and B33 by O a i
now given by cr 1//311). t 3)/fl(3)i and the eigenvalues of AEZy AB22Y. Thus, this first
step attempts to reduce the order of the generalized eigenvalue problem to be solved. If
no such permutation matrices exist, then A22 A, B22--B, and other submatrices do
not exist. If permutations exist which transform both A and B into upper triangular
form, then A22 and Bz2 do not exist and all the eigenvalues have been found.

The algorithm for determining the permutation matrices P1 and P2 can be best
described by use of the n n matrix W defined by Wii IAiil + IBiil, although the matrix
W is never computed. The rows of W are first scanned for a row containing only one
nonzero element. This element is permuted to the (n, n)-position, which determines the
nth row of P1 and the nth column of P2. The scan is then repeated on the leading
principal submatrix of order n 1, determining the (n 1)st row and column of P1 and
P2 respectively. This process continues until either we have more than one nonzero
element in each row of the reduced W or W is in upper triangular form. In the latter
case we have completely determined P1 and P2. In the former case we perform similar
scanning operations on the columns of the remaining principal submatrix of W. The
single nonzero elements are permuted to the (1,1)-position, and the matrix is deflated
from the top.

The operation count for step one is best stated in terms of maximum and minimum
values. The minimum number of operations results when a reduction in the order of
matrices is not possible by permutations. In this case 4n 2 comparisons are required. The
maximum number of operations occurs when both A and B can be permuted into upper
triangular form. This reduction may require up to 3Z-n 3+O(n z) comparisons and
9n 2 + O(n) replacements. Since eigensystem solvers require ym3 operations, where m is
the order of the matrices and , is O(10), the cost for this step is either minor or more
than repaid by the savings in the computation of the eigensystem of Azzy AB.zzy.

3.2. Step 2. Scale A and B. The second step involves scaling the A2a and B2z
matrices by two-sided diagonal transformations, and is normally the major step in the
balancing algorithm. We will drop the subscripts fromA and B, denote their order by m,
and discuss the computation of rn m diagonal matrices D1 and D2 such that the
elements of DIAD2 and DIBD2 have magnitudes as close to unity as possible.

If we let D and Dz be expressed as integral powers of the computer radix p,
denoted by ri and ci respectively, and look at logarithms to the base p, the scaling
strategy results in the following minimization problem:

(8) min Y’. [(ri + ci + logo [aiil)2 + (ri + C + logo
ri, ci i,i=

The problem is similar to that studied by Curtis and Reid [2], but our technique for its
solution differs.

By eliminating the requirement that the r’s and ci’s be integers and differentiating,
we find that the solution to the minimization problem is the solution to the following
consistent, singular, system of linear equations"

(9) [EF FE2].[]=[ -g]-h

where F1 and F2 are m m diagonal matrices whose elements are the number of
nonzeros in the rows and columns (respectively) of A and B, g and h are the vectors
row and column sums of logarithms of nonzero elements in A and B and E is the sum of
the incidence matrices of A and B. In the case where A and B contain only nonzero
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elements, the system simplifies to

(10) 2[ m/r eeT"l
I_ee mI_l" [] [--]’

where e is the m-vector containing a one in each component. Much information can be
determined about the linear system in (10). The Moore-Penrose generalized inverse of
the coefficient matrix is given by

F l__i_s3 eeT. 1 7-

l_ |m ,4m 4m 2 ee

ee r --I ee
m --m

and the Moore-Penrose solution of (10) is given by

1

-mm(erg)

Moreover, the Hessian matrix corresponding to (8) is positive semidefinite, making the
above solution a global minimum.

The balancing algorithm computes the solution to (9) by an iterative scheme which
takes advantage of the above knowledge about the linear system in (10). Denoting the
coefficient matrix in (9)and (10)byM-N andM respectively and the right side vector
by b gives an iteration of the form

X
(k+l)

X
(k-l) ..[_ O)k+l(ld,kz(k) .q- X

(k)
X (k-l)),

where

Mz(= b-(M-N)x(.

The acceleration parameters O)k+l and/xk are determined by the conjugate gradient
method. This iterative scheme has been developed and analyzed by Concus et al. [1].
Since integers ri and cj are desired, the iteration is stopped after the magnitude of the
correction to r and c is bounded by 0.5.

The number of operations per iteration is given by 4m2 additions and 4m2

comparisons plus O(m) operations. If A and B are reasonably dense (i.e., contain
mostly nonzero elements), the iterates converges in 2 or 3 iterations, and only O(m2)
operations are required for this second step. When A and B are very sparse, the
iterative scheme usually converges within 1/2m iterations, although large sparse matrices
have not been tested to determine the extent of this overestimate. Theoretically, the
iteration will have converged to full accuracy after m iterations.

3.3. Step 3. Grade A/B. The scaled A22 and B22 matrices may still have some
variation in the magnitudes of their elements. The third step attempts to arrange these
magnitudes inside the matrices in order to reduce the size of the errors incurred during
the eigensystem computation. The matrices DIAE2D2 and DBE2D2 will be denoted as
the A and B matrices in this section.
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The QZ-type algorithms have the strong tendency of finding the eigenvalues in
decreasing order starting at the top of the triangularized matrices (i.e.,
la2//321_->..._->1c.,//3.1). The ai’s and /i’s are determined by the application of a
sequence of unitary transformations to the rows and columns of A and B. Thus, it would
be advantageous for the QZ-type algorithms if the (i, j)-elements of the A matrix
decrease in magnitude and those of the B matrix increase in magnitude as
increases.

This objective cannot always be accomplished by applying permutation matrices to
A and B while still preserving the eigenvalues. However, we can determine permu-
tation matrices such that

IlA,lll/]lU, ll >= IIAIil/IIB]I )

where the subscripts denote the rows of the permuted matrix and the superscripts
denote the columns. This permutation has the effect of trying to make [Ui[ and Vi;I in
(5) approximately equal to O[(D,AD:OI and ’I(DIBD:[I respectively, where 0 and
are "small" positive scalars greater than 1. That is, it tries to prevent the spreading of
the errors associated with the large elements of DAD2 and DBD2.

Since permutation of the columns of a matrix does not affect the 1-norm of the rows
and vice versa, the grading algorithm first determines the permutation matrix G: such
that the ratio of the column norms of AG: to the corresponding column norms of BG2
appear in nonincreasing order. Then, G is determined such that the ratio of the row
norms of GIAG2 to those of GIBG2 appear in nonincreasing order.

The actual number of operations required for this step is a function of n and m, the
order of the original and reduced matrices respectively, and the norms of the rows and
columns of B. The maximum number of operations is given by 2m: additions and
6nm +61/2m: replacements plus O(m + n) operations. Certainly, this number will be
insignificant compared to the number of operations required by the eigensystem solver.

3.4. Summary. After completion of the three-step balancing algorithm, the
problem Ax ABx has been transformed into the problem A’v AB’v, where

All A12DzG2 A13
0 GIDA22D2G2 GIDA23[
0 0 A33 _]

and

0011

B2D2G2 B13
GIDBEEDEG2 GIDB23[

0 B33 _]

with the partitioning, Ao. and Bij defined as in (7). If only the eigenvalues are desired,
the problem has been reduced to considering only the matrices GIDIA22DzG2 and
GDBz2D2G2. If the eigenvectors x are also desired, they may be computed from the
eigenvectors v by the equation

X P2 2G2v
[. v3

where v is partitioned consistent with A’ and B’.
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The first step does not rely on any assumptions concerning the eigensystem solver
which follows or any information about the size of the matrix elements. Thus, the code
implementing step one may be used to reduce the order of the matrices prior to calling
any generalized eigensystem solver.

Step two attempts to increase the "involvement" of the smaller matrix elements in
computing the eigenvalues. This step may hinder the detection of eigenvalue in-
accuracies if the smaller elements have much larger relative errors. For example,
consider the following eigenproblem on a 6 decimal digit computer:

1 1 xl
=h

2 10-5 x2 0 10-5 x2’

where the user knows that there are errors of the order 10-6 in all the elements ofA and
B. The OZ algorithm applied to the unscaled matrices would return one eigenvalue on
the order of 10-5/10-5 with about one accurate digit, thus alerting the user to the
potential inaccuracy of the eigenvalue and the closeness to det (A- AB)= 0. The OZ
algorithm applied to the scaled matrices would return more accurate eigenvalues to the
given eigenproblem but would return a’s and/3’s on the order of unity, providing the
user with no additional information. In practice this problem has only occurred when
the rank deficiency of A and B is the result of one row or column rather than a linearly
dependent set of several rows or columns. That is, small a’s and B’s which result from
cancellation have not been adversely magnified by the scaling. Also, this potential
problem does not occur when the relative errors in the matrix elements are of similar
magnitudes. The code has been written so that the scaling routine can be easily bypassed
or replaced by a routine implementing a different strategy.

The third step has been specifically designed to precede the QZ-type algorithms.
However, most eigensystem solvers involve matrix-vector products or row and column
transformations which would produce more accurate results with graded matrices.
Since the cost is low and improved accuracy is expected, it is recommended to use this
step prior to calling any generalized eigensystem solver.

4. Test results. The balancing algorithm has been extensively tested on the
IBM System computers at the Oak Ridge National Laboratory. The code has been
analyzed for portability by the PFORT verifier described by Ryder [8] and for data
flow and software errors by the DAVE code described by Osterweil and Fosdick [6].
The QZ algorithm in EISPACK described by Garbow et al. [4] has been modified to
accept partitioned matrices of the form in (7) and was used as the eigensystem solver in
all test cases. The modification involved only minimal changes to the subroutines
QZHES and QZIT.

Three of the numerical experiments are discussed below. The computations were
performed in double precision (relative accuracy of 16.8 decimal digits) on an IBM
3033 computer. A p-value of two was used in the second step instead of the actual
computer radix 16, since better equalization of the element magnitudes occurs with
smaller p-values and the additional rounding errors are minimal. The results are
presented in tabular form with the first inaccurate digit in the eigenvalues underlined.
Only the first few digits of the c’s,/3’s and sensitivity factors are given, since their
magnitudes are the primary interest. The signed integer superscript at the end of a
number represents its decimal exponent.
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Test Case 1. Pseudo-random magnitudes.

-_2.0+1 _1.0+4 -2.0+0 -1.0+6 -1.0+1 _2.0+5-

6.0-3 4.0+o 6.0-4 2.0+2 3.0-3 3.0+1

-2.0-1 _3.0+2 _4.0-2 _1.0+4 0.0+0 3.0+3

6.0-5 4.0-2 9.0-6 9.0+0 3.0-5 5.0-1

6.0-2 5.0+ 8.0-3 _4.0+3 8.0-2 0.0+o
0.0+ 1.0+3 7.0-1 _2.0+5 1.3+1 -6.0+4_

-_2.0+1 _1.0+4 2.0+0 --2.0+6 1.0+1 --1.0/5-

5.0-3 3.0+0 --2.0-4 4.0+ --1.0-3 3.0+1

0.0/ -1.0+2 _8.0-2 2.0+4 -4.0-1 0.0/

5.0-5 3.0-2 2.0-6 4.0+0 2.0-5 1.0-1

4.0-2 3.0+1 _1.0-3 3.0+3 _1.0-2 6.0+2

_-1.0/ 0.0/ 4.0-1 _1.0+5 4.0+0 2.0+4

This test case was generated by starting with a well-balanced pair of matrices and
scaling the rows and columns by pseudorandom powers of ten. The eigenvalues of
Alx hBlx are 1, 2, 3, 4, 5 and 6. In this test case all the eigenvalues are equally
dependent upon the relative accuracy of each matrix element.

The output scaling vectors r and c computed by the balancing code were
Tr [-9, 3,-3, 10, 0,-7],
Tc [5, -5, 8, -11, 5, -8].

The first step had no effect upon the eigensystem computation since permutations could
not isolate any eigenvalues. All the row and column norms of the scaled matrices were
of the same order of magnitude; thus, step three also had little effect upon the
computations. The results are presented in Tables 1 and 2. Since the eigenvalue
sensitivities are based on error bounds, they may be pessimistic but will allow
comparisons to be made between the original and balanced problems. The sensitivity

TABLE
Computational results from A x AB1x.

Original problem Balanced problem

0.999999999996649
1.999999999997867
2.999999971458162
4.00000059881658
4.99999501541569
6.000001319640085

1.000000000000007
1.99999999999993
3.000000000000064
3.99999999999096
5.00000000004284
5.99999999990004

1.00+4/1.00+4
2.04+/1.02+0
1.47-1/4.89-2
1.99+/4.97-1
6.02-1/1.20-1
2.01+/3.35-1

8.29-1/8.29-1
3.72-1/1.86-1
2.04+/6.81-1
2.67+/6.68-1
2.11+/4.22-1
4.94-1/8.23-2
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TABLE 2
Eigenvalue sensitivities ]’or A x ABix.

lYTnx1-1 IIAII/IAIIInll

Eigenvalues Original Balanced Original Balanced

1.0 1.43+4 3.91 4.77 lO 7.08+2
2.0 1.58+5 3.25+1 8.65+11 8.65+2
3.0 4.33/6 7.68+2 3.29+13 2.70+4
4.0 7.12+7 3.47+3 6.91 +14 1.52+5
5.0 1.69+8 1.02+4 2.00 15 5.31
6.0 1.06+8 7.59+3 1.48 15 4.61 +5

factor (y TBx)-I will be different for the two problems due to the normalization of the
eigenvectors. This normalization did not appear in (4) and (6) since the eigenvectors
also appeared in the numerator of these expressions.

Test Case 2. Polynomial root solver. The A2 matrix is the lower Hessenberg
companion matrix for a characteristic polynomial of order ten with the coefficients
appearing in the last row and the integers one through ten as roots. The B2 matrix is the
identity matrix. Thus, the eigenvalues of A2x AB.x are the integers one through ten
and may be computed by standard eigenproblem solvers. This type of problem is
frequently encountered and contains some ill-conditioned eigenvalues.

No reduction of the generalized eigenproblem was possible by permutations. The
computed scaling vectors were

Tr I-6, 6, 6, 5, 3, 1,-2,-5,-10,-17],
T

C [-5, -6, -6, -6, -4, -3, 0, 3, 7, 13].

The elements of the graded A2 matrix ranged from 8.0+0 to 8.6-1, and those of the
graded B2 matrix ranged from 6.25-2 to 2.0+. The results are presented in Tables 3
and 4.

The QR algorithm with balancing (subroutine RG) contained in EISPACK and
described by Smith et al. [9] was also used to compute the eigenvalues of this test case.
All the eigenvalues computed by the QZ algorithm using the balanced matrices were
slightly more accurate than those computed by the RG code. The accuracy improve-
ment ranged from 0.2 to 0.5 of a decimal digit. This difference may be the result of the
QR balancing code using a p of 16, whereas the QZ balancing code used a p of 2.

Test Case 3. Graded matrix.

-1.0+ 1.0+1

1.0+1 1.0+-

1.0+3 1.0+4

1.0+5 1.0+6

1.0+7 1.0+8

1.0+9 1.0+1 1.0+1

1.0+11 1.0+12

B3 is the identity matrix. In this test case, the small eigenvalues are primarily
determined by the smaller matrix elements.
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TABLE 3
Computational results from A2x AB2x.

Original problem Balanced problem

Eigenvalues

1.0000000!2369418
1.99999996337335
3.000000001590798
4.000000012841566
5.000000022317214
5.999999978272570
6.99999997591551
7.99999999892347
8.999999999720611
0.0000000000648

0.999999999999909
2.000000000001343
2.999999999978608
4.000000000156160
4.999999999369756
6.000000001545631
6.999999997618605
8.000000002256280
8.99999999799755
10.00000000027369

1.00+/1.00+ 7.31-1/7.31-1
2.00+o/1.00+ 1.15+/5.74-1
3.00+0/1.00+ 1.49+/4.95-1
4.00+/1.00+ 1.64+/4.11-1
5.00+0/1.00+ 2.08+/4.16-1
6.00+0/1.00+ 2.20+0/3.66-1
7.00+0/1.00+ 2.09+0/2.98-1
8.00+0/1.00+ 2.22+/2.78-1
9.00+0/1.00+ 2.20+0/2.44-1
1.00+1/1.00+o 2.32+o/2.32-1

TABLE 4
Eigenvalue sensitivities for A2x AB2x.

IIAII+IAIIIBII

Eigenvalues Original Balanced Original Balanced

1.0 8.84+1 8.55 +1 1.13+9 1.15 +3

2.0 9.84+4 3.86+3 1.26 12 5.96+4
3.0 1.03+7 6.18+4 1.32+14 1.08+6

4.0 2.49+8 4.87+5 3.17 15 9.46+6
5.0 2.28+9 2.11 +6 2.91+16 4.53+7
6.0 9.99+9 5.41+6 1.27+17 1.27+8
7.0 2.32 lo 8.39+6 2.96 17 2.13+8

8.0 2.92 lO 7.77+6 3.73 17 2.13+8
9.0 1.89 lo 3.96+6 2.41 17 1.17+8

10.0 4.92+9 8.52+5 6.28 16 2.68+7

No reduction again occurred in the first step of the balancing algorithm. The scaling
vectors converged in 3 iterations and were

Tr =[0, -2, -5, -8, -10, -13, -13],
T

C =[0, -2, -5, -8, -10, -13, -13].
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The graded diagonal B3 matrix contained elements ranging from 1.49-8 to 1.0+. The
graded A3 matrix remained a banded matrix of the same bandwidth. The comparison of
results is presented in Tables 5 and 6.

TABLE 5
Computational results from A3x AB3x.

Original problem Balanced problem

Eigenvalues

-9.463474156469348+8

-9.46346995288439+2

9.99899999974069-1

1.04633724646799+3

1.00989903019993+6
1.046337712685939+9

1.01000000980394 +12

-9.463474156469419+8

-9.463469197097401 +2

9.998990201929422-1

1.046337214788077+3
1.009899030199714+6

1.046337712685945+9

1.010000009803940+12

-9.46+8/1.00+ 1.13+2/1.19-7
-9.46+2/1.00+ -5.89+/6.22-3
1.00//1.00/ 9.23-1/9.23-1
1.05+3/ 1.00+0 8.52+/8.14-3
1.01 +6/1.00+o 1.92 1/1.90-5
1.05+9/1.00+ 1.31+2/1.25-7
1.01+12/1.00+o 1.51+4/1.49-8

TABLE 6
Eigenvalue sensitivities ]’or A X AB3x.

Ilmll+ IAIIInll

Eigenvalues Original Balanced Original Balanced

-9.46+8 1.00+ 3.57+7 1.10+12 3.38+16

-9.46+2 1.00+ 9.15+2 1.10+12 1.59+7

1.00+ 1.00+ 1.17+0 1.10+12 1.93+4

1.05+3 1.00+ 8.31+2 1.10 12 1.45+7

1.01 +6 1.00+ 7.16+4 1.10+12 7.35+1

1.05+9 1.00+0 3.24+7 1.10+12 3.39+16

1.01 +12 1.00+ 6.71+7 2.11 +12 6.78+19

The RG code was also used to solve this eigenproblem. Since the A3 matrix is
symmetric, balancing in the RG code will have no effect upon the matrix. In the
QR-computed eigenvalues there were about 15 accurate digits in the four of largest
magnitude, about 11 in the next two largest, and only 4 accurate digits in the eigenvalue
of smallest magnitude. Note that A3 is graded in the wrong direction for the QR
algorithm. This example illustrates that one cannot blindly use the QR algorithm with
balancing and always expect results which are as accurate as possible in the presence of
rounding errors.
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The following observations can be drawn from the results of the many random,
pathological, and pedagogical sets of matrices which have been tested.

1. Tremendous improvement in the accuracy of the eigenvalues is possible when
the elements of A and B have widely varying magnitudes.

2. When significant improvement in eigenvalue accuracy is not obtained, the total
number of QZ iterations required to converge to the eigenvalues is usually reduced. In
fact, the savings in computer time executing the QZ-type algorithms may easily offset
the cost of the balancing algorithm.

3. The bounds on the theoretical sensitivity of the larger eigenvalues may become
larger when the matrices are balanced, but the actual accuracy is not seriously affected.

4. None of the eigenvalues corresponding to the balanced matrices was
significantly less accurate than those of the original matrices.

5. Balancing helps the accuracy of the preliminary reduction phase of the QZ
algorithm as well as the iteration phase.

6. Comparison of computed eigenvalues for Ax =ABx and Bx =(1/A)Ax
indicates that the variation between the computed eigenvalues is less when the balanced
matrices are used than when the original matrices are used. The accuracy variation
averaged 0.6 decimal digits per eigenvalue for the balanced matrices versus 1.0 for the
original matrices over 24 test cases.

5. Acknowledgments. The author wishes to thank J. J. Mor6, D. S. Scott and G.
W. Stewart for their helpful discussions during the course of this study. The author also
wishes to thank the referee whose suggestion lead to an improvement in the third step of
the algorithm.
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ON COMPUTING ROBUST SPLINES AND APPLICATIONS*

FLORENCIO I. UTRERAS"

Abstract. We present a new method for computing spline functions associated to a weight function. This
algorithm is based on the Newton minimization algorithm for unrestricted problems. Then we use this method
to compute, by a penalty function method, the spline functions with restricted values and show the
convergence of this method. Finally, we give some numerical examples showing the nice smoothing properties
of these spline functions.

Key words, splines, noisy data, penalty method

1. Introduction. Consider the problem of approximating an unknown function f
belonging to H2[a, b given its values known with error at n different points of the real
interval [a, b]. Let zx,. ", zn be those values, i.e.,

(1) Zi f(ti) + Ei, 1, 2," ", n,

where

(2) a < t < t2 < < tn < b, lel <-_ e, l, 2, n,

and assume that 8i, 1,..., n are independent random variables with uniform
distribution in [-e, e ].

To solve this problem Laurent [5] has proposed approximating f by the solution cr
of the problem

b

(3) Minimize f [g"(t)]: dt.
gH2[a,b]

Ig(ti)-zil<=e, 1,2,...,n

In other words, among all functions g belonging to H2[a, b] whose values at the
knots lie in the range of possible values for f, we seek the functions having the lowest
"energy."

It is well known (see [5]) that for n -> 2 there exists one and only one solution to
problem (3).

In [2], the authors analyze several algorithms to solve this minimization problem
and conclude that the best is the one proposed by Laurent [7] based on a dual iteration.
Unfortunately, even though the best, it is very expensive (cf. [2]).

In this paper, we use a penalty function method and prove, for an appropriate
choice of the penalty functions, the convergence of this algorithm. To solve the partial
problems, we use a Newton type method and give an efficient method allowing us to
perform each iteration at a very low cost.

More precisely, it is clear that problem (3) is equivalent to"

Minimize [ [U"(t)]2 dt + Y X(u(ti)--Zi)(4)
uH2[a,b] [ i=l

where X is a function defined on I, with values on

O, e[-e,e],
(5) x(a)

+o, a [-, ].
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The penalized problem then becomes

(6) Minimize / [u"(t)] dt +
uH2[a,b] t i=1

where XItk is a convex, twice differentiable even function such that

(7) k(0) 0.

In 4 we choose the sequence {qk}, k -> 0, in such a way that we have

(8) lim k(X) X(X) for all x.

If we call o-(k) the solution (if there is one) of problem (6)k, we prove that

(9) lim

the convergence being in the sense of H2[a, b].
To solve the partial problem (6)k, we propose to use a Newton method with a

specially designed method to perform each iteration. In this way, the cost of each
iteration is linear in n.

2. Spline functions associated with a weight function ap. The results given in this
section have been obtained by several authors in recent years (see [3], [4], [6], [8], [11]).

Let " --> be a lower semicontinuous convex function such that (0)= 0.
Consider the problem

b

(e,) Minimize {In [u"(t)]2 dt+ xI(u(ti)--Zi)}.uH2[a,b] i=1

Then (P,) has a unique solution tr. Moreover, r is a cubic spline; i.e."
(i) cr is a polynomial of degree 1 in In, tl], It,,, hi.
(ii) tr is a cubic polynomial in [ti, ti/], 1, 2,. , n 1.
(iii) tr C2[a, b].

In addition, tr satisfies
(iv) r’"(t)-tr"’(t7, )s--OXI(o’(ti)--Zi), i= 1, 2,’’’, n,

where 0() denotes the subdifferential set of at (cf. [5], [10]).
A more precise idea of the behavior of such a spline can be obtained with more

restrictive hypotheses:
(H1)
(n2) s C2().
In this case, the problem (P,I,) has a unique solution, the subdifferential set reduces

to the derivative of and condition (iv) becomes

(v) tr"’(t)-tr"’(t:, =-’(tr(ti)-zi), i= 1, 2,..., n.

We also know that the set of cubic splines with knots {tl, t2," ", tn} is a linear
n-dimensional space, and that {tri, 1,. , n} defined by

1, ]=i, /’=1,. .,n,
(10) o’i(ti)--

0, ji, i=l,...,n

form a canonical basis. Moreover,

(11) r(t)= . O’(ti)ti(t).
i=1
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From this fact problem (P.) has the same solution as

(12) (P,) Minimize (.Oi,XiX,-" I(xi--Zi)},xR i=1 ]=1 i=1

where
b

(13) oii J,, o’: (t)o’ (t) dt.

To minimize (12), it is necessary and sufficient, (under hypotheses H1, H2), that the
solution y satisfy

(14) 2 i to0.y. + ’(y- z;) 0, 1, 2,. , n.
i=1

To find y, it is tempting to use a fixed-point method. Unfortunately, given the
properties of l-l, the set of functions for which such a method converges is very small
(see [2]).

In the following section we use a Newton method to solve (12) directly and see how
our technique to perform iterations is also applicable to the IRLS algorithm (see [1]).

The problem of determining such a spline function has often arisen in the literature
(see, e.g., [2], [3], [8], [4]). In particular, the use of spline functions for the smoothing of
noisy data containing outliers has led Lenth [8], Huber [3] and others to use this type of
splines; they call them robust splines because of their relation with robust statistics. In
this paper, we also use this name.

3. Calculating the robust spline. As we have already said, to find y, the vector of
values of r at the knots, we use Newton’s method to minimize

(15) J(x)- .oi]xix]-- i I(Xi--Zi)
i=1/=1 i=l

J is convex because q is convex and the matrix l’l ((.oij) is positive semidefinite
(see [6]). Moreover, if is twice differentiable, we can apply Newton’s method; that is,
given x (k) we compute x (k/a) as the minimizer of the quadratic functional

(16)
--Zi)"" i’t’(X (k) (k)Zi)(Xi- X

i=l i=l

(k))2."q-1/2 E *"(xk)--Zi)(Xi--Xi
i=1

In the case when qt is ditterentiable only once, we can use the IRLS algorithm,
which amounts to replacing "(x (k)i zi) by ’(x)- zi)/(x(k)-- z). This choice is con-
vergent (see [1]), but the rate of convergence is only linear.

The vector x k/l) will be uniquely determined if and only if Qk is positive definite,
that is, if f +D is positive definite, where D is a diagonal matrix with elements
d, 1/2q"(x)-- zi). In the following theorem we give necessary and sufficient conditions
for fl +D to be positive definite.

THEOREM 1. A necessary and sufficient condition for f+D to be positive definite is
that there are at least two elements ofD different from zero.

Proof. We have d, => 0, 1, 2, , n. Suppose that there exists w I" such that

(O+D)w =0;
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then

and therefore

(17)

(18)

(w,w)+(w, Dw)=O,

(w, l’w) O,

(w, Dw)=O.

From (17) we see that w is an eigenvector of l) corresponding to the eigenvalue 0.
This implies (see [6]) the existence of c,/3 R such that

(19) wi a + ti, 1, 2,. , n.

Substituting (19) into (18) we get

2 dii/2afl diiti/i 2 diit2i O.
i=1 i=1 i=1

If a -0, we obviously have/3 0 and w 0. Assume # 0. Then

(20) . dii + 2t diit / t 2 diit2i O,
i=1 i=1 i=1

where A
A necessary and sufficient condition for the existence of a real number A satisfying (20)
is that

2

( di,t,) -(i=1 dii)( diit2i)0,
i=1 i=1

or, equivalently,
2

(i=1 dii)(i=l diit2i) (i--1 diiti)
But the Schwarz inequality gives us

(i---1 dii)( i=l dut2i)>-( ’i=1 diiti) 2"
Then there exists 3’ I such that

If dkk # 0 and di. : 0 we have

1 ytk, 1 ytj,

which is a contradiction because tk tj.
On the other hand, if only one element of D is different from zero, then there exist

a,/3 and D, /D is only positive semidefinite. This concludes the proof. I-!
If f +D is positive definite, xk/l)is the only solution of the system

2D,x + ’(x(k)
x(k))-z)+2D(x- =0,

which is equivalent to

(21) (f+D)x Vx(k) k)- (x(-z).
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Since lq is a full symmetric matrix, we perform O(n 3) arithmetical operations in
computing the solution of (21). Moreover, this system is very ill-conditioned because
of the distribution of the eigenvalues of fl (see [12]). We then seek an equivalent system
as follows"

Let s be the cubic spline taking values xl, xz, , xn at the knots; i.e.,

(22) s(ti) Xi, 1, 2," n.

Let

(23) d =fx.

It is well known (see [9]) that

(24) d s’"(t[ s’"(tT ), 1, 2,..., n.

To find an equivalent system we proceed as in Paihua [9]. Let Ai, 1, 2, , n be
the derivative of s at ti. By a straightforward computation we get

h2-2mx+hldl =6

(25) di =6[Ai+l-2mi +Ai Ai-2mi-1-}/.i-1]-/ h2 i=2,"’ ,n-l,
i--1

where

An 2mn-1 + ln-1
dn -6

h-1

Xi+l Xi
mi hi ti+l- ti, 2, , n 1.

hi

In addition it is shown in [9] that h 1," , h. must satisfy

2A1 +h2= 3ml,

(26) Ai-1 + 2 1 + Ii + Ai/l 3 mi +7-- i=2,...,n-l,

An-1 + 2An 3ran-1.

Substituting (25) into (21) and using (26) we get the following block tridiagonal
linear system:

-A B1
C2 A2

C3
B2
A3 B3

-X1 -D1-

X2

h.

_h _D._
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where

and

A 2 p,h

B1

3

3hi
h i-1

Ci= 2 h -

Ai

1 hi

2

3

(n-1 Onh2n-1)-+
6

=2,... ,n-1

hi-ll ]

i=2,...,n-1,

i=2,3,...,n-l,

3

Di 01hi (k h2,,-, (k)

w diix(ki )._ 1/2,kij,, (x(/k)_Z), i=l,2,...,n.

This linear system can be solved by block Gauss elimination. For n greater than 3,
the number of multiplications and divisions necessary to solve it is 36n 14, instead of
the O(n 3) operations used by a Cholesky decomposition applied to the original system.

This reduction in the cost of a single iteration allows us to apply Newton’s method
successfully. Moreover, the stability of the calulations is no longer a problem.

In Table 1 we give typical run times on an IBM 370/145 computer. To stop
iteration we use the criterion of maximum error less than 10-8.

TABLE

20
40
6O
80
100

Tirne (sec)

0.05
0.30
0.40
0.60
0.80
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4. Convergence results. In this section, we choose an appropriate sequence of
penalty functions ’kI’t k and show that the penalty method converges in this case.

First, we recall a classical result (see [5]).
THEOREM 2. If n is greater than 2, there exists one and only one solution to the

problem

(31) Minimize( y, fly), 1, 2,..., n.
lyi-zil_<-e

Furthermore, if we set A Ill, a necessary and sufficient condition for , A to be a
solution of (31) is that

(i) zi e =< )7 _-< z + e, 1, 2,. , n,

(ii) A >= 0 if z e,

Ai <=0 i.f i Zi-It- e,

A O ifz e < < z + e.

Proof. See Laurent [5].
Let )(k) be the solution of the problem

(32) (Pk) Minimize {(y, fly)+ *k(Yi--Zi)},yn

where the functions k are defined by

(33) ktk U -(34)

_(k)

(a)

(b)

It is clear that ktk(U) converges to X(u) pointwise; i.e.,

/ o, lul =< ,
k--,clim i"tk(U) ] dr’00, [Ul > e.

We will now prove that (k) converges to )7 as k increases.
Define A(k)= lq)7(k.)The following lemma gives us information about the behavior of
as k increases.
LEMMA 1. The following inequalities are satisfied"

[y(k)_. 2e2 IA(,k)[ for k > 2zil<=e+2k_l
[i )-- zil --< 2(llzlloo + ) for sufficiently large k.

Proof.
(a) From 2 we know that k), 7k)satisfy

(35) 2h(/k)+ *,( kL Zi) O, i-l,2,...,n.

From (33) we have
2k-1

and

(36) (I’)-(v) e(ev)
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Let 4 be defined as

(v) (,I,,)-’(v);
with this notation (35) becomes

_(k) (ik)y Zi -&(2h. ), 1, 2,

Hence

(37)

(38)

,n.

Zil "--[4’ (2,(/k) )[ 4 (2lh(/)
Consider now two cases:
Case 1. 21a(/)l_-< 1/e. The function being nondecreasing, we have

&(2[a(,I)& =ee+2 1
["

Case 2. 2]h()[ 1/e. Using the fact that is concave on the positive real line, we
have

a>o;

hence
2

4’(21,(k) I)-<- e +2k Li 21 I--
-<_e(1-1 2e 2

la(f
2k 1) +2 1

2k -2
=2k-1

_<8+
2e 2 1

2k i [hilk with21h(/) I_>-

which concludes the proof of part (a).
(b) We have A(k)= /)7(k! Then

where

Ilxll-max {Ixl, Ix=l,..., Ixl.
Replacing this inequality in the inequality obtained in (a), we obtain

[() 2e

and
22e

We now choose K such that for k K

1
2k-1 2’
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and conclude that for k => K"

or

the proof of part (b) and of Lemma 1 are complete. 71
We are now ready to state the main result of this section.
THEORZM 3. Let be the solution of the problem (P),

(P) Minimize (y, Dy), 1, 2,. , n,
lyi-zil<_-e

and k the solution of the problem (Pk)

(Pk) Minimize { (y, y) +
yl i=1

where k is defined by

%(u)= u
Then

lim 7) .
Proof. We first prove that any convergent subsequence of {()} converges to 7.

Then we see how this implies that {7(k)} converges to 7.
(a) Let {37()} be a convergent subsequence of {7k)} and let be its limit. Then

== lim ()= lim (

(k) <(a.1) If i Zi--e, for k K1 we have i =Zi and

k)=_(y --Zi)O for all kK1,

so that i 0.
(a.2) If i Zi + E for k K2, we have k) Zi, and

A()=-(y,)k) -zi)O for all k K2,

so that i 0.
(a.3) If i ]zi- e, zi + e[for kK3, we have

and (ki )-- _1/2iI(fk). Zi) will converge to zero as k increases, because q, converges
uniformly to zero on any compact subset of ]-e, el. Hence , 0.

(a.4) Following Lemma l(a) we have

2E 2

=e+2k_l
since this is bounded, we obtain

i=l,2,...,n.
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We have thus shown that (17, A) satisfy the necessary and sufficient conditions of
Theorem 2, and so 17 17.

(b) From Lemma 1, we know that y_tk is bounded and this implies the existence of at
least one convergent subsequence. From (a) we know that its limit is 17; moreover, all
accumulation points of (k)coincide with , so {k)}converges to 7. ]

COROLLARY. If cr is the solution of (3) and tr
tk the solution of (6)k, we

have

lim 0
"(k)

0",

in the sense of the norm of Hq[a, b ].
Proof. We know (cf. [5]) that the linear operator 5e which associates tr to 17 is

continuous. Hence

lim tr
(k) lim ( 17(k)) 6’(17) o’.

Numerical results. We have performed computations on artificial data obtained by
rounding the values of a known function f at n different points of the real interval
[-1, 1]. In Table 2 we tabulate run times obtained on an IBM 370/145 computer and
compare them with the DUAL algorithm as programmed by C. Di Crescenzo [2]. All
computer times of the dual algorithm are taken from [2]; Di Crescenzo used an IBM
370/67 computer, so we have divided those times by 3 in order to obtain the run times
in our computer.

We can observe the great difference existing between run times. We can also see
that run times for the penalty function method are approximately linear in n.

TABLE 2
Run times (secs)

20
40
60
80
100

Penalty

1.35
4.54
8.12

11.39
15.19

Dual

3.5
18.6
52.0
83.6

129.0

To illustrate the behavior of the spline restricted to smooth data containing
roundoff errors, we ran the program for 100 points in the interval [-1, 1]. The test
function is

7r 3zr
cos x 0.5 cos -x

and the rounding error e is 0.25.
In Fig. 1 we plot the data (marked by an x); the test function (marked by an F)

and the resulting restricted spline, calculated by the penalty function method (marked
by an S). We can see the remarkable approximating properties of these spline
functions.
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NUMERICAL SOLUTION OF A QUADRATIC MATRIX EQUATION*

GEORGE J. DAVIS+

Abstract. This paper is concerned with the efficient numerical solution of the matrix equation AXZ+
BX + C 0, where A, B, C and X are all square matrices. Such a matrix X is called a solvent. This equation is
very closely related to the problem of finding scalars A and nonzero vectors x such that (A 2A + AB + C)x O.
The latter equation represents a quadratic eigenvalue problem, with each A and x called an eigenvalue and
eigenvector, respectively. Such equations have many important physical applications.

By presenting an algorithm to calculate solvents, we shall show how the eigenvalue problem can be
solved as a byproduct. Some comparisons are made between our algorithm and other methods currently
available for solving both the solvent and eigenvalue problems. We also study the effects of rounding errors on
the presented algorithm, and give some numerical examples.

Key words, matrix equations, eigenvalues, solvents, Newton’s method

1. Overview. The quadratic eigenvalue problem has been studied for some time.
Lancaster [11] provides a good introduction to the subject, and explores the appli-
cations to vibrating systems. Far less is known about general matrix equations. Dennis,
Traub and Weber [4], [5] consider general matrix polynomials, and present two
algorithms for the calculation of solvents. The first is a generalization of a scalar
algorithm of Traub, and the second is a generalization of Bernoulli’s method. These
algorithms apply to polynomials of arbitrary degree, and produce only a "dominant"
solvent. Solvent $1 is said to dominate solvents Sz, , Sk if all the eigenvalues of $1 are
greater in modulus than all the eigenvalues of the other Si.

This work is concerned only with quadratic polynomials, and the dominance of
solvents is not required. The algorithm itself is Newton’s method applied to the matrix
equation F(X)= AxE+BX + C 0. Critical to the algorithm is the method of cal-
culating the correction (F’(Xi))-IF(Xi). Much of the work is done by a complex version
of the QZ algorithm [8], [12], [15]. Once a solvent S is found, it is clear that
F(AI) A 2A + AB + C has the following factorization:

() F(AI) (-B AS AA)(S AI).

The eigenvalues of the original quadratic, then, are the union of the set of eigenvalues of
S and the set of eigenvalues of

(2) (-B-AS)x=hAx.

Equation (2) represents a generalized eigenvatue problem, and it can also be solved by
the OZ. The factorization in (1) is a reason why $ is sometimes called a right-solvent of
F(X). Corresponding theory exists for left-solvents, i.e., left factors in (1). We will
consider only right-solvents, and call them, briefly, solvents.

Discussion of the QZ algorithm immediately brings to mind an algorithm for
solving AXz +BX + C 0. Consider the h-matrix problem (h z + AB + C)x 0 and use
the substitution y hx to get

x x
0

* Received by the editors December 27, 1979.
r Department of Mathematics, Georgia State University, Atlanta, Georgia 30303.
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Use the OZ algorithm to produce the eigenvalues A and eigenvectors (x, y)7" of length
2n. Choose an independent set of n vectors from the set of x’s just computed, and
assemble them as columns into a matrix W. If A is the diagonal matrix of corresponding
eigenvalues, we have

(4)

or

(5)

AWA2+BWA+CW=O,

A WAw-l)2 -- B WAW-1) -1- C 0.

Knowing the eigenvalues and having an independent set of eigenvectors, makes it
possible to construct a solvent. After one solvent is found, the factorization (2) can be
used to deflate the problem.

Although a plausible algorithm on some problems, this method fails when it is
impossible to choose an independent set of vectors to form W. Consider the problem

((6) X2 -Jc- X - \ 0 0

and the associated A-matrix problem

0 A+A -6 y 0

There are two solvents (0 2) and (-30 -), each with a Jordan block of size two.
There is only one eigenvector associated with (7), namely (1, 0) r. The QZ algorithm on
the system (3) produces vectors of the form (1, 0, A, 0)r for h 2 or -3. Thus it is
impossible to construct a solvent of the form WAW-1.

2. Perturbation theory. Before we can begin any analysis of a computer algorithm
to find solvents of F(X), we must first understand the nature of the problem itself. When
the matrices A, B and C are read into a computer, certain inaccuracies result due to the
finite precision of the machine. It is the intent of this section to assess what effects these
errors can have on a computed solution. No mention will be made of our algorithm, as
these topics concern the problem and not the method used to solve it.

In what follows, the derivative of F(X) is needed. F is a function from Rnn -Rnn, and its Fr6chet derivative is an operator. This operator is described by what it

does to a typical element H R. We employ the notation F’(X)H to mean "the
operator F’(X) applied to H". It is easy to show that

(8) F’(X)H (AX +B)H +AHX.

It is clear that the derivative, and hence its inverse, is a linear operator. Indeed, the
2derivative can be expressed as an n2x n matrix. In fact,

(9) F’(X)H [(AX + B)(R)I + A(R)Xr] h,

where Y(R)Z is a block matrix with its (i, ]) block equal to YiiZ, and h is the vector [h11,
h12,""" ,hln, h21,"" ,h,,]r.

We now examine the effect of small perturbations in the original data on the
solvents of F(X). Such perturbations can arise from many sources, including errors in
measurement and inaccuracy involved by generating matrices in a computer.
Throughout this discussion, e is assumed to be some small positive number.
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Let X be an exact solvent of F(X), and let " X +AX be a solvent of the
perturbed equation X2+/X / 0. Here, A /E,/ B + F, t C + G with

IIEII--< llAII, IIFII-<- llUll and IlOll <-- llCll.
If

and

then define

Similarly, if

and

then define

F(X) AX2 /BX + C

.f’(X) (A +E)X + (B +F)X + (C + O),

AF(X) (X) F(X) EX2 +FX + G.

F’(X)H (AX +B)H +AHX

I’(X)H [(A + E)X + (B +F)]H + (A + E)HX,

(10)

AF’(X)H =- "(X)H F’(X)H (EX +F)H +EHX.

Under the assumption

IIF’(X)-II IIAF’(X)II <--k < 1,

we get the following bound on the error in X.
THEOREM. For sufficiently small e, IIAXll <- ye, where

2 IIF’(X)-II [IIAII" IlXll + IIBII" IIXlI],

i k
11,411,

(11)

2
=a +O(e).Y

1 + x/l 4a/3e

Proof. First note that #(’)= 0, or

(A + E)(X + AX)2 + (B +F)(X + AX) + (C + G) O.

Expanding (6) gives

(12) F’(X)AX + AF’(X)AX + AF(X) + (A + E)(AX)2 O.

Premultiplying by F’(X)-1 and using assumption (10), it is easy to verify

(13) IIAxll-----
IIF’(X)-lil [IIAF(X) / (A + E)(AX)ZlI].
1-k

Further, recalling the definitions of AF(X), E, F and G, use the fact that

(14) Ilcll IIAII" Ilxll / llUll" llXll
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tO get

[[F’(X)-I[[
(s) iIAXlI-<- 1 k

[2e (llAII" IIxll + IIull" IIxll) + ( + )llAll" IIAXll2],

or

(16) IIAXll + IIAXll.
As this is a quadratic inequality in [lAX[I, it can readily be solved to yield the desired
result.

This analysis breaks down if F’(X) is singular. A singular F’(X) represents an
extreme case of sensitivity in that small perturbations in the data can produce unboun-
ded changes in the solvents. There is no question here of subroutine accuracy or of
errors in computation; these are fundamental properties of the problem itself.

As an example, consider the matrix equation

(17) ( 11)X2+(-8-:)=(0 0
-8 0 0]"

This equation has an infinite number of solvents generated by the equations

X y 2y -t- Y3 8

Y3 Y4 2yE+y4=4.

The derivative operator may be expressed as the 4 x 4 matrix

2X21 2X12 + X22 + Xll X21 \ /hll\
2Xllq-X21q-ax22 X12 2X12q-2X22]Ih12I

2x2 2X,z+XEz+x,, x, I
2x +Xl +2x Xl 2x1 +2x/h/

4Xllq-X21

/ 2X12F’(X)H
4Xll + X21

\ 2X12
which is singular.

If we perturb (17) into

(18) (22 01)X2+ ( -8 0)’
setting up the equations for X shows that no solvents exist.

Two things can be concluded from this study of perturbations. First, any algorithm
can expect difficulty on problems with a singular or nearly singular derivative. Second,
any well-designed algorithm should be able to detect such a singular derivative, and not
produce meaningless answers. After the algorithm is described, its performance on such
examples will be analyzed.

3. Subroutine SQUINT. SQUINT stands for Solving the Quadratic by Iterating
Newton Triangularizations. It is Newton’s method applied to the matrix function F(X).
After an initial guess X0 is chosen, successive iterates are generated by the formula

(19) Xi+ Xi Ti,

where

(20) T F’(Xi)-xF(Xi), O, 1, 2,....

The correction Ti is given as the solution of the system

(21) (AXi +B)Ti +ATiXi =F(Xi), --0, 1, 2, .
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The following algorithm for the computation of Ti is proposed. Using unitary
transformations, simultaneously reduce (AXi / B) andA to upper triangular form, then
reduce Xi to lower triangular form. Solve the transformed triangular system and
translate back.

The idea of triangularizing such a system first appeared in a paper by Bartels and
Stewart 1] in connection with the equation AX/XB C. Golub, Nash and Van Loan
[9] describe some modifications to the algorithm in [1] and mention problems of the
form AXB + CXD -F. We have put the triangularization idea to work for the system
(21).

More specifically, the algorithm is:
(1) Find a unitary Q and Z such that both Q(AXi +B)Z U1 and Q(A)Z U2

are upper triangular.
(2) Find a unitary R such that RH(X)R L is lower triangular. Note that at this

point the system (21) can be written

(QHU1Zn) Ti + (QHUEZH)T(RLR F(Xi).

(3) Solve for Y ZHT,.R in the system UI Y + U2YL + QF(X)R.
(4) Translate back T ZYRn.
To accomplish step 1 a complex version of the QZ algorithm [8], [12], [15] is used.

The matrix Z must be saved for the translation step 4. Matrix Q need not be saved, but
in addition to applying it to (AX + B) and A, it must also be applied to F(Xg). The QZ
program was modified to accept an auxiliary matrix F and to form QF.

The details of step 2 are slightly more complicated. To reduce the number of
subroutines, the reduction ofX is accomplished with another call to the QZ subroutine
with Xg and an identity matrix. This produces unitary matrices R and $ such that

SXR U3, SIR .
The matrix is the identity with + 1 on the diagonal. Note from the second equation
above that S =/R. Thus

XH (IRH)HuRH, X R UfDRH.

We apply/ to the columns of Uf producing another lower triangular matrix. The
transformation is complete when OF(Xi) is multiplied by R. The back substitution and
translation in steps 3 and 4 are straightforward. The new iterate is then generated.

The operation count for one iteration is overestimated by 22n+9no + O(n2).
Here the number r is the average number of iterations for the OZ algorithm to reduce a
subdiagonal element to zero. These are complex operation counts and details can be
found in [3]. The algorithm requires 11n+ n storage locations, and at the expense of
some readability this total can be cut to 9n a + 3n.

As an attempt to reduce the total of operations, we might consider using a modified
Newton’s method:

X+I X -F’(Xo)-IF(X), O, 1, 2,....

The subscript on F’(Xo)- never changes, indicating that the decompositions of
(AXo / B), A and X0 are required only once. As in the scalar case, the quadratic
convergence of the method is lost with this modification. More seriously, on several
problems where Newton’s method converged the modified method did not. The
difficulties encountered with the modification have far outweighed any savings in work.
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The solution of the triangular system warrants further investigation. The sub-
routine in which the solution is done has an error return which indicates an inconsistent
linear system. Such inconsistency is associated with a singular or nearly singular
derivative. Upon triangularization, we must backsolve the system

(22) U1Yi + U2 YiL F,

where again U1 and U2 are upper triangular, L is lower triangular, and/6 QF(X)R.
A singular derivative occurs when

U1)ii -1- (U2).(L). 0

for some and ]. Just having a singular derivative is not necessarily cause for an error
return, however. Recall that in the solution of the linear system Ax b, a singular A
may or may not be a problem. If b is in the column space of A, a solution will exist, but it
need not be unique. What we detect is not singularity but inconsistency of the linear
system (22).

The explicit formula for yij is given by

[(UI). + U2).(L)ii]
(23)

k=i+l
(U1)ikyj- E (V2)iky li. (U)i,ygflpi.

k=i+l p=/+l k=i

Inconsistency is declared when the (UI), +(U2),(L)ii is small relative to the
right-hand side of (23), that is, when

l( U1)ii "at- U2)ii(L).[ Iright-hand side].

Here e is the floating point precision. If singularity but not inconsistency is present, Y0 is
set to zero.

SQUINT is written entirely in complex arithmetic. This is done since one has little
idea whether the solvents of a general problem are real or complex. Matrix equations
related to certain physical systems can, however, be shown to possess all real solvents.
For example, the lambda-matrix equation for an overdamped vibrating system has A, B
and C real and symmetric, A and B positive definite, C nonnegative definite, and
(xTBx)E--4(xTAx)(xTCx)>O for all real vectors x. All the eigenvalues and eigen-
vectors in this case are real and thus so are the solvents.

Garbow [7] has written a complex version of the QZ as modified by Ward [15],
which performs all computations in real rithmetic. Such a program is valuable on any
system with real solvents. SQUINT is a general purpose algorithm and thus no
advantage is gained by remaining in real arithmetic.

The original QZ algorithm uses Householder transformations to perform the
reductions. A Householder matrix is of the form I + vu r, where v Tu =--2, V is a
multiple of u and only selected elements of u are nonzero. Such matrices are symmetric
and orthogonal. The complex analogue of a Householder matrix is of the form I + vuH

where vHu =-2. These matrices are Hermitian and unitary. The QZ code was
rewritten employing these. The end product of the QZ reduction on two matrices A1
and A2 is an upper triangular A2 and "quasi-triangular" A1; that is, A1 is upper
triangular with 2 2 blocks on the diagonal representing pairs of complex eigenvalues.
The further extraction of the quotients (A),/(A2), is quite complicated. In the
complex QZ case, A and A2 are always upper triangular, and the 2 2 block problem
does not arise. This makes the complex code significantly shorter.
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There are two fundamental questions which must be addressed, namely where to
start and when to stop. A general matrix equation usually gives no hints about even the
existence of a solvent. We therefore use the following initial guess, which is designed
merely to provide a rough estimate for the magnitude of a possible solution"

(24)

The oo-norm is used above because of its easy computability. Note the plus signs in
(24). The first plus sign is used to avoid the possibility of X0 0. If B were also zero, such
a guess produces a singular derivative and an error return. The second plus sign avoids
the possibility of a complex X0 on a real problem. It is easy to construct examples with
real solvents and yet where the square root in (24) produces a complex guess.

Implemented also is a re-initialization strategy. If, in 30 iterations, the initial Xo
has failed to produce a convergent sequence of iterates, we restart with X31 (-1)X0
to introduce complex iterates. If 30 more iterations also fail, we start again with
X61 C. If all three guesses fail, we indicate so and stop. There is strong numerical
evidence justifying these strategies, and some examples are presented later.

Convergence is declared when the norm of the residual F(Xn) is less than the
roundoff error in computing it. In the section on error analysis it is shown that the
roundoff error in computing F(X), where X is a solvent, is bounded by

1/2e [(4 n + 2)IIAII" IIXII + (2/ n + 2)IiBII" Ilxll +11cii3 +

The e is again the floating-point precision.
As usual, this bound is pessimistic in the sense that it assumes the worst possible

roundoff at each step.
The main theorem on the convergence of Newton’s method is due to Kantorovich

[0], [3].
THZORZM (Kantorovich). If IIF"(X)ll <- g in some closed ball U(Xo, r) and ho

(no)(n0)(g)---1/2 with IIF’(Xo)- ll<-no and IIx -x011_-< o, then the Newton sequence
startingfrom Xo will converge to a solution X, ofF(X) which exists in U(Xo, r), provided
that

1-/1-2hor>-ro rio.ho

Proof. [See 13, p. 135.] Although the theorem is a powerful theoretical result, as is
usually the case in applications, it turns out to be quite restrictive for our purposes.
Ideally, we would hope to use this theorem to predict the success of the algorithm
starting from a given Xo. We have produced many examples where the conditions of the
theorem are not satisfied, yet the algorithm converges. In fact it is rare that all the above
conditions are met. Our experiments indicate that the proposed algorithm converges
under much less stringent conditions.

4. Error analysis. We denote by fl (x) the floating point number which the
computer assigns to the real number x. For rounding computers, fl (x) is the floating
point number nearest x, and for chopping computers fl (x) is the first floating point
number with absolute value less than or equal to x. The unit roundoff u is defined as the
largest number m such that

fl(l+m)= 1.
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The rounding u is e and the chopping u is e. This machine e is the floating point
resolution of the machine, or the distance from 1 to the next largest floating point
number.

Some standard assumptions are made on real floating point arithmetic. In parti-
cular, let fl (x y) denote floating point addition, subtraction, multiplication or division.
We assume that

fl(x.y)=(x.y)(l+6) withlBl_<-u.
Further details on real floating point arithmetic can be found in [6] and [17].

There are similar assumptions for complex arithmetic. These first appeared in
Varah [14], and for convenience they are listed here. Let Zl and z2 be complex numbers.
Then

fl (Zl "q- Z2) (Zl =[:: z2)(1 + 8),

fl (ZlZ2) (ZlZ2)(1 + ),

fl (Zx + Z2) (Zl "" z)(1 + ),

]61_--< u,

ll <- 24u / O(u=),

I1 <-- 54-u + O(u2).
Wilkinson [17] presents an error analysis for basic matrix addition and multi-

plication. Under the assumptions on complex arithmetic, it is easy to verify the
following.

LEMMA. Let A and B be complex square matrices of order n. Then

fl (A +B)= A +B + E1 with IIEII ullA + BII,
fl (AB) AB +Ez with IIE=II 24-nullAllllBIl / O(u).

Having this lemma, we may now establish the roundott error in computing F(X).
We compute fl (F(X)) according to ([(AX)X] + (BX)) + C and get the following bound.

THEOREM. Let F(X) AX2 +BX + C. Then

fl (F(X)) F(X) +E with IIEllv
_-< u [(44n + 2)IIAIIIIXII2+ (2/+ 2)IIBIIFIIXII + Ilcll ] + O(ub.

In this section on perturbation theory, it was shown that roundoff errors in the data
can be magnified by ]]F’(X)-I]]F. We now prove a similar assertion about the solution of
F’(Xi)-IF(Xi). These results are applications of results in Wilkinson [16] and their
extensions in Burris [2]. Throughout, we denote computed quantities with the "hat"
notation, all norms used are Frobenius norms and u is the unit roundoff. The expression
a <. b is used to mean that a and b are on the order of u and a _-< b + O(u2). The actual
development parallels one in [9] for the problem AX +XB C. Omitted details can be
found in [3]. The system we wish to solve is

(AXi +B Ti +ATiX, F(X).

Step 1. Use the QZ algorithm to simultaneously triangularize (AXi + B) and A.
We calculate a Ux and U2, both upper triangular, such that

(25)
O(AX +B +E)Z 01,

O(A +Ez)Z Uz
and

(26)
IIEII <. g(n)ullAX + BII,

IIEII <. gz(n)ullAII.
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In other words, the exact triangularization is computed for a nearby pair of
matrices. Also, gi(n) is a function of n whose exact form in unimportant. Details can be
found in [2].

Step 2. Use the QZ or QR algorithm to triangularize Xi. A lower triangular matrix
/2 is calculated which satisfies

(27) R

with

(28) IIEII .< ga(n)ullXll.

Step 3. Solve the triangular system. First we take a detailed look at setting up the
right-hand side of the triangular system

(29) t(ZnTR + 2(ZnTR )f_,
Before any of .the triangularizations begin, we must first calculate F=

AX2 +BX + C. From the previous analysis it is clear that F F +E4 is produced with
lIE411<, g4(n)ullFll. In the upper triangularization step we do not explicitly form the
matrix , but apply it to F at each stage. Burris guarantees that

(30) QF Q(F + E5) Q(F +E4 + E5),

with

(31) I[EsI[ gs(n)ullF + E4II.
In the lower reduction step, we actually construct the matrix of transformations
that is,

(32) R +E6 with lIE611 g6(n)u.

We emphasize that, although the Q and R matrices are accumulations of unitary
transformations, they are handled in two comtely different ways. ere is never a
matrix 0, only the result . is applied to QF by matrix multiplication. Thus,

(33) Q(F +E7)R with IIEII gT(n)ullFII.

Now consider the solution of the triangular system. Define ZnR and
fl (), and solve

(34)

Although it is not actually carried out this way, the solution of (34) is the same as
the solution of an n2x n 2 system with

(Ot)+(),
y =(yl, y12,"’, yl,, y21,’",

? (71,, q,..., [,, [1,..., L).
We have now

(35)

Solving (35) produces a such that

(36) (/+ E8)33 =) with IIEsII . g8(n)ullll.
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Step 4. Translate back. The solution ’i is obtained by computing ,I?i/, where,
as before,

I rI R I’I +E,
z, =Z+E9,

Thus we compute the solution , where

(37)

and

(38)

lIE611 . g6(rt)U,

lIE911 <. g9(n )u.

’i Z Yi + Elo)R

I1011 . go(n )ull 11.
We seek a bound for the relative error in Ti. Note that, since Ti ZYiR n, the

unitary invariance of the Frobenius norm guarantees that IIT, II=IIY/II. Manipulation
with (37) and (38) shows that

(39) IITII IIY/II IIY/II"

Thus it is critical to assess the error in solving the triangular system for Y. Examining
some well-known analyses of the solution of triangular systems, we can again make an
assumption that IIF’(X)-IlIllAF(X)II <-k < 1, to get the bound

(40) lIT",11 .1k
IlF’(Xi)-llig2(n)u[51lAII IIx, + 31111] + go(n)u

IIT, 1-k

Details on this phase of the analysis can be found in [3].
The presence of the IIF’(X)-II term through6ut this paper is of fundamental

importance to the study of quadratic matrix equations. In the bound above it is seen that
this term has a great effect on the accuracy of the Newton correction T. These
corrections, in turn, affect the eventual speed of convergence. Indeed, if the T are large
enough the method may fail to converge at all.

In pertfirbation theory it was seen that the same IIF’(X)-ll greatly affects the
accuracy of a computed solvent of F(X). Even if the correction T is computed exactly,
the next iterate X/I may be large due to the size of IIF’(X,)-ll. If the derivative is nearly
singular, no algorithm (including ours) can expect success. It is important to note,
however, that the present algorithm is stable. It does not introduce any errors which are
not inherent to the problem itself.

5. Examples. To illustrate the behavior of the algorithm on various problems, we
present a few examples.

Consider the example mentioned in 1 on which the QZ approach fails"

(6) 22 -]"X -- 0 0 0

There are two solvents,

S=
0 2 0 -3’

but only one eigenvector, (1, 0)T. SQUINT converges to $1 in 6 iterations.
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In Dennis, Traub and Weber [5] are two algorithms for the calculation of dominant
solvents. Solvent $1 is said to dominate solvents S2, , Sk if all the eigenvalues of $1
are greater in modulus than all the eigenvalues ot the other Si. If no solvent dominates,
the algorithm in [5] may fail without further analysis of the problem.

An example is

0 12 0 01-69)X+(-2 14)=(0 0)(41) X2+(-2

The solvents have eigenvalue pairs of 1 and 3, 1 and 2, 1 and 4, and 2 and 3, so no
solvent dominates. Although [5, algorithm 1] fails, SQUINT produces

in 9 iterations. We emphasize that the work in [4] and [5] involves polynomials of
arbitrary degree, whereas SQUINT was designed only for quadratics. The general
degree case is much more complicated.

Finally, problems of the form

(42) X2+X+C=O
were generated in such a way that the complex n n Hilbert matrix is a solvent; that is,
Sij (1/(i +]-1))+ 4----i-(1/(i +/’-1)). Table 1 gives the order of the matrix and the
number of iterations required by SQUINT to converge. All calculations were due in
COMPLEX*16 arithmetic on a Univac 90/80 computer.

TABLE

Order of the matrix no. of iterations

1 6
2,3,4,5 7

6,7,8,9,10 8
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AN ANALYSIS OF AN INVERSE PROBLEM IN ORDINARY
DIFFERENTIAL EQUATIONS

RICHARD C. ALLEN-t AND STEVEN A. PRUESSS"

Abstract. A method is proposed for recovering the matrix X in u’ Xu when some of the components of
u are known. Both continuous and discrete cases are considered, with the latter of most interest for
applications. An algorithm is described and numerical examples are given.

Key words, ordinary differential equation, inverse problem, numerical methods

1. Introduction. In this paper we are concerned with the problem of recovering
the coefficient matrix X in the linear system of differential equations

d
(1.1)

dt
u(t) Xu(t), 0 <= <= 1,

where k -< n of the ui(t) are available as tabular functions. A closely related problem is
that of fitting exponential functions to data since the solution u (t) to (1.1) clearly has this
form. Such exponential fitting is discussed in many places in the literature [2], [6]-[9],
[12]-[19] but, as is mentioned in several of these references (e.g., [8, pp. 272-280],
[18]), the solution to this problem can be very sensitive to noise. In many applications
knowledge of the coefficient matrix X is sought, so we have addressed this problem.

Since the authors are unaware that the problem of determining X has been
analyzed before, we begin in 2 by deriving conditions under which the problem of
determiningX is well defined. Algorithms are constructed for computingX both when
k n and when k < n. These algorithms recover X up to a similarity transformation,
uniquely if k n. The more realistic case of discrete data is treated in 3; the arguments
use known results on perturbations of linear systems, but application to the inverse
problem (1.1) is new. The final section offers some numerical results which illustrate the
utility of the algorithms. Only interpolating spline approximations are used since they
permit a straightforward verification of the theory of 3. When k < n, the matrixX can
always be recovered uniquely by imposing a suitable number of auxiliary conditions. An
example of this is also included in 4.

A major motivation and application of our work comes from problems in linear
compartmental analysis which arise in such diverse areas as biology, medicine and
engineering. An excellent discussion of the compartmental problem may be found in
[14, especially lectures 3 and 4], where the author surveys a class of biological problems
leading to systems of the form ti Xu where u is known and X is desired. There it is
assumed that the components of u have somehow been represented satisfactorily by
explicit exponential sums

o-le
qt + + o-he

with distinct a. The Jordan form is diagonal under this assumption andX is obtained by
a similarity transformation. In contrast to this approach, our method does not require
that the eigenvalues of X be distinct, nor does it require that the data be fit explicitly by
exponential sums.

* Received by the editors March 31, 1980, and in revised form December 3, 1980.
f Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico

87131.
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2. Mathematical preliminaries. In this section U refers to the ith component of the
vector u; Greek letters refer to scalars or scalar-valued functions.

From u’ Xu, it follows that u(t) eXtu(O). For a more useful alternate represen-
tation, let {Ai}/d=l be the distinct eigenvalues of X with algebraic multiplicities
M, M2,’’’, Ma; then u can be written as

(2.1) u(t)= f’4,(t)
=1

for some vectors {f.} with cb(t)=ea*’, 4(t)= t*-ea’, etc. Since b a,4,
b Ab2 + b, etc., and {bi} is linearly independent over [0, 1], u’= Xu is equivalent
to the system

(2.2) XF FV.

Here, F is the n x n matrix with f. in column j; V has diagonal (h,... ,ha),
subdiagonal (/z2,’’’,/z,) and all other entries zero. Each/zi s{0, 1,..., n- 1} and
/zi 0 if and only if s {M, M1 +M2, , n }. Clearly, X is determined uniquely if and
only if

(2.3) F is invertible.

While much use is made of (2.3) below, the condition suffers from being dependent
on a particular representation of u (in terms of {4’i}). A more satisfactory condition can
be found by noting that {bi} linearly independent implies F is invertible if and only if
{ui(t)}in=l is linearly independent. Since any change of basis from {bi} to another
representation is via an invertible transformation, it follows that X is determined
uniquely if and only if

(2.4) {ui(t)}in=l is linearly independent over [0, 1].

Note that ifX SJS- with J in Jordan form, then u(t) SetS-u(O). Set v S-lu
so that v(t) etv(O) Y gi4i(t) with gi s-lf It follows that F is invertible if and only
if G := [gl,"" ", g,] is invertible. Now, if some h, say h, appears in more than one
Jordan block of J, then tt-eX’ cannot appear in v(t) (recall that M is the algebraic
multiplicity of ). But then g 0, so G, and hence F, is not invertible. Thus, the
problem is not well defined when X is derogatory.

Next consider the case when only k components of u are known, but still for all t.
For simplicity, the known components are assumed to be the first k. If not all rows of F
are known, it is clear from the characterizing equation XF FV that X cannot be
determined. In this situation, we attempt to determine X up to a certain type of
similarity transformation, so that at least the eigenvalues can be found. Since a
similarity transformation on X is equivalent to a change of basis for u, it seems
reasonable to restrict attention to those transformations which leave the known
components of u unchanged. In particular, with Ik the k by k identity, set

(2.5) = {Pn x n, invertible/p ( Ik 0)}P P2
If, is the exact (but unknown) answer, we try to find (or estimate) X pp-1 for some
P6e.

With this goal in mind, we note that if the problem were well defined when k n,
i.e., the associated F is invertible, then the n- k unknown rows of F are arbitrary as
long as full rank is maintained. To show this, let [F11F2] be the k known rows of/ with
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FI k k. Choose C1 n- k x k, C2 n- k x n- k so that F F F,= has full rank (any_c c2J
row dependencies in [FllF12] would produce a singular F, so we must have rank
[F11F12] k). If X FVF-1, =/V/-1, then a simple calculation shows that F P/
with P ((tl c2,e-1) and hence X pf;p-1 for P e 5’, as desired.

Besides the full rank condition on [FIF2], the above analysis assumes that V,
which depends on the eigenvalues ofX and their algebraic multiplicities, is known. For
this to be so, the functions M1, CMI/Mv’’’, , must appear at least once in the
formulas for Ul,’", Uk. For example, if n =3 and k-2 with Ul(t)=3e-t-2e-2t

HE(t) te -t, then the eigenvalues are -1, -1, -2. However, if Ul alone is given, then
only two of the three eigenvalues are apparent. The precise statement for determination
of a solution is: X is determined to within a similarity transformation in 5’ if and only if

(2.6a) rank [F1F12] k

and

(2.6b) for 1 -< -<_ k not all fi O, ] M, M1 +M2, n.

While (2.6b) looks rather odd, its significance is that it characterizes n. It also implies
that the first k equations of the system u’ Xu do not uncouple from the remaining

It appears difficult to restate condition (2.6b) in an equivalent manner which is
independent of the representation of u in terms of {j}. What is needed is a condition
which characterizes n and says that information about all n eigenvalues is present in the
known data. There is an analogue of (2.6a), viz., {ui(t)}k= is linearly independent. This
equivalence follows immediately from the linear independence of {&j}.

Since {i} is not easily recoverable from discrete data, we now introduce an
alternate characterization of X from which discretizations can be made. From u’ Xu
it follows that

X" Io u(s) ds u(t)- u(O).

Choose {si}i"=l distinct in (0, 1]; then

(2.7) XA B,

where

Io(s) ds, u(s) B--[U(Sl)-U(O),. U(Sn)--u(O)].

When k < n, only the first k rows of A and B can be computed. We now show that if the
determination of X is well defined, the known k rows of A are independent.

THEOREM 1. Assume { (t) dt}’=l is linearly independent over {si}i"=l. If k n
and (2.3) holds, then A is invertible, ffk < n and (2.6) holds, then the first k rows ofA are
linearly independent.

Proof. If some linear combination of the rows of A vanishes, then from (2.1) for
l<_l<__n

(2.8) 0 yg u,(t) dt y bi(Sl),
i=1 i= i=1
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with (t)= J i(s)ds. By assumption these functions are linearly independent over
{s}, so i=a Yfi =0, l<=]<=n. Finally, (fq) of full rank implies y =0, 1<=i <-k, as
desired.

Note that {i}i% linearly independent over {si} follows if X has real eigenvalues
(see, e.g., Meinardus [10, 6.5]). This is the usual situation for the applications
mentioned in the introduction. In any case our numerical algorithm discussed in 3 can
monitor this independence so we do not feel this is a critical restriction.

In order to use (2.7) to solve for X when k < n, some way is needed to compute the
remaining rows of A and B. Equivalently, some means must be found for computing
Uk+l," ", U,,. This section is concluded with a procedure which uses the known data
along with the differential equation to fill in the remaining data. The algorithm requires
n -k stages: at stage s(k <-s <n) assume (1) ua," , us are known; and (2) condition
(2.6) holds with k s. To generate us+a, first factor A T [A aA 12]T A 11 S X S, A a2

s x n s, into Q[R T017- with R s s and upper triangular, Q n x n and invertible. This
can be done by Gauss elimination (with partial pivoting) or a QR factorization (with Q
orthogonal). Set C Q-aBr and partition C into (cC) with Ca s s, C2 n s x s. Solve
gxa C1 for Xll (xii), s x s. Choose J so that IIC2ejll2 maxi IlcEeillE(llyll22 := y2i ei
is column j of the identity matrix of appropriate size). Finally define us+a
/.t j XjjUi"

THEOREM 2. If the underlying problem is well defined, i.e., (2.6) holds, then the
above algorithm is well defined.

Proof. The argument is by induction on s. For s k the assumptions follow from
(2.6). Assuming that the algorithm works up to stage s, we must show the above steps
are valid and that the resulting u1,’’’, us+a satisfy (2.6). From (2.7),

A2r2’ ,X2)=(B"
with X partitioned as is A. Since X is characterized only up to a change of variables for
Uk+a, ", U,,, the last n k rows of A are arbitrary as long as full rank is maintained. In
particular, at stage s the blocksA and A2 are arbitrary, and after the factorization,

The arbitrariness Of A21, A22 is equivalent (through the invertible matrix Q) to
arbitrariness of fi-21, fi22. Set/(21 =0 so that Xrx =R-1Cx. Then rank [AlaAE]=S
(from the induction hypotheses and Theorem 1) implies R is invertible, so Xxl is
uniquely determined. Choose J as described. Not all the CEei 0, since otherwise
Xx2 0, which implies the differential equation u’ Xu uncouples into an s x s system
in violation of (2.6b). Thus, we have CEe O. Let ErE have first column CEe, with the

’T Tremaining columns chosen so that A22, and thus A, is invertible. Then, A22X12 C2
implies Xr

xEer e, i.e., row J of Xa2 is e. From row J of u’= Xu it then follows that
us+l u’-Y.i=xiui. To complete the proof, it is necessary to show that the F matrix
corresponding to the new data ux, , us+x satisfies (2.6). The first s components have
been unchanged by the above process, only the new variable us+ has been added.
Equivalently, only a new row has been added to F; the first s rows remain unchanged
from the previous stage. Condition (2.6b) follows trivially. For (2.6a), if rank [FxFa2] <
s + 1, then the newly added row must be dependent on the others. Equivalently,
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u$+1 Y.i=l yiu with at least one y nonzero. Since some of the X entries change in
proceeding from stage s to stage s + 1, we use a circumflex to indicate the values at the
beginning of stage s. Similarly, t$+1, , t, are the variables (known only implicitly) at
the start of stage s. Then J <_-s implies

But at the end of stage s

which implies

/=1 /=1 /=s+l

Y xiu" Yjui Yfii, not all y. zero,
j=s+l j=l j=l

in contradiction to the assumed linear independence of variables at the start of this
stage.

3. Discrete data. In applications u can only be measured at discrete data points,
say {t}, 1 _-< _-< m. In order to apply the method suggested by (2.7) to estimate X, some
closed form approximation t to u is needed. Thus, the first step of our algorithm is to
construct approximations t to ui, 1 <- _-< k. The choice for the type of approximation
used is irrelevant to the theory of this section as it is only necessary for t to be
sufficiently close to u.

When k n, i.e., data are known for all components, a straightforward analogue of
(2.7) is used to compute an approximation " to X.

Algorithm I.
(1) Compute t(t), an approximation to u(t) (1 _<-i _-<n), based on the given data

{u (ti)}.
(2) Set s i/n, 1 <- <= n, and form the matrices

a(s) ds,..., a(s) ds, [a(s)-a(0),..., a(s,)-a(0)].

(3) Solve ..’ =/ (by solving r..r =/r for the n columns of .r).
For the following error analysis the vector norm I]" 112 defined earlier, with

associated map norm I1’ I1= eor matrices, and Frobenius norm Ilxll :- sqrt (Yx.) are
used. In addition, we need Ilu, ll,)-- max,lu,(t)] and

Bounds on the error X-X follow from standard perturbation results for linear
systems [5], [11]. We assume, henceforth, that the underlying continuous problem is
well defined so that the matrix A in (2.7) is invertible. It is first necessary to bound the
perturbations in A and B; the proof of the following lemma is just a simple calculation.

LEMMA.

l<__i<--_n,
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THEOREM 3. I Ilu ali=., < /(4- IIA-II=), then
(1) is invertible
(2) for l, 2, n,

where

iiXe, r-x e, ll 2
IIx%,ll=

_-< M/I1%,

1 4[IA-I[ Ilu all,,"
The bound in this theorem assumes B rei # 0 or equivalently Xrei # 0. If Xrei 0,

then an analogous bound can be established on the absolute error 112eill.,
For k <n, new approximate data tk/l,"" ", tn are generated by a procedure

analogous to that described at the close of 2, with t, , / replacing u, A, B
respectively. The first two stepsof the algorithm proceed as in the k n case, except
that only the first k rows of A, B and the first k components of t are computed. Then
n- k stages of Algorithm II are performed, viz., at stage s (k -< s < n)"

Algorithm II.
(1) Factor into 0[/ r0]T with/ s by s, upper triangular.
(2) Partition d:=0-/r into () with tx s x s.
(3) Solve/211 =dl for 211 (i]) S X S.

(4) Choose J so that IId.ell=- maxj IId=ell_ and define

u,/ a) xjjui.

Once data are known for all components, Algorithm I can be used to construct X.
For most classes of approximating functions a, accuracy can be lost at each stage of
Algorithm II due to the t term in the new data

If Ilu- 11,, is sufficiently small, then standard perturbation results from linear
algebra can be used to demonstrate that Algorithm II is well defined by following the
argument in Theorem 2. This assumes the new data generated are also sufficiently
accurate, which depends on the type of approximation being used. When k n,
Theorem 3 holds for any kind of approximation t to u.

4. Numerical examples. To use the algorithms of the preceding section, some
choice must be made for the form of t. In order to demonstrate rates of convergence
which verify the theory, interpolating spline approximations have been used. In practice
the data will not be sufficiently accurate for this, so some kind of smoothing is advised.
Polynomial splines for each ti are easy to calculate and manipulate, so we have used
these. For algorithms and analysis of interpolating polynomial splines see de Boor
[3, Chapts. 3-6, 13]. This reference also discusses smoothing and least squares splines
which may be used when the data is noisy.

We begin this section with specific error bounds for general k when cubic
interpolating sp’lines are used. The bound (4.3) is well known; however, its application
(Theorem 4) is new. If end conditions like those incorporated into the code in [4] are
used, then it is known [16] that for u sufficiently smooth (here u(t) eXtu(O) is smooth)
there is a constant K, independent of the data spacing, such that for each component

(4.1) IIDP(u,-a,)ll,<=Kh4-p, 0<-_p_-<4.
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Here h:=max (t/+- ti), Do is the pth derivative operator and it is assumed the mesh is
quasi-uniform; i.e., max (ti+l- ti)/min (6+1- t) can be bounded by one constant for all
{6} considered. It then follows that as h 0

(4.2) Ilu,- a, ll,- O(h4), 1 <_- <_- k.

To construct data for the remaining n k components, use Algorithm II. Since at each
stage the new component/s+l depends on t, it follows from (4.1) that one power of h
in the error bound is lost for each stage, i.e., as h 0,

(4.3) I[u,- t,llt O(h4+k-i), k < <- n.

If n k -> 4, t will not converge to u when cubic splines are used. Fortunately, in most
applications n is small.

The bound onX-, when k n follows directly from (4.2) and Theorem 3; when
k < n, observe that at stage s of Algorithm II the s x s principal minor of " is
unchanged. At the initial stage s k, the perturbations in the matrices used to
characterize this minor are O(h4) from (4.2). At the next stage the perturbations can be
O(h 3) since tk/X has error O(h 3). Proceeding inductively one can establish

THEOREM 4. ff k n andX is the output ofAlgorithm I, then as h - 0

(4.4) IIx- O(h4).

If k < n and ff is the output o[ Algorithm II and I, then there is a matrix X p..p-1,
P 5, X the exact (but unknown) answer, such that as h - 0

For s k + l, , n,

Ixij iil O(h4),

Ixii fqi O(h4+k-s),

l<_i,]<-k.

i=s, ]<-S,
]=s, ins

One modification of Algorithm II produces more accurate approximations
(asymptotically), at least for k > 1. Rather than produce new data in merely one
component at each stage, generate data in components, where is the maximum
number of linearly independent columns of C2. Then set

us+ u() xt(.iui, 1 <- <- l,
]=1

where I(i) is the index of the ith independent column of C2. This approach has the
advantage of higher accuracy (since fewer derivatives are needed to compute
Uk/l, , Un) but has the obvious disadvantage that it requires a means of determining
linear independence. Since it is possible to have examples where 1 at each stage, we
have used Algorithm II as given above.

For a completely different approach for generating new data, Allen-Wright [1]
have proposed a variant of Prony’s method. For equally spaced data with spacing
h, u(ti+) eXhu(ti) implies

(4.5) u(ti+,-1)C1 +" + u(ti)C, -u(ti+,),

where t" + Cltn-1 +. + Cn is the characteristic polynomial for eXh. If sufficient data
exist, viz., (m-n)k >-_n, an overdetermined system results for {C}. Choose {u(tj)},
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k < <- n, 1 <_- <_- n so that (ui(t/)), 1 <- <- n, 1 <- ] <- n has full rank. Then (4.5) is used to
compute ui(tj) when > k and/" > n. For discrete data one uses t rather than u. While
this idea can be extended to the case of non-equally spaced data, it suffers from the fact
that the coefficient matrix associated with (4.5) can be ill-conditioned. It appears that
the condition number is O(1 /h"-k) as h 0. However, if the data are quite accurate and
equally spaced, then this method produces good results.

We note that the condition that F be of full rank and {0bj(t)dr} be linearly
independent over {s} can be monitored by our algorithm. The violation of either
assumption will produce a rank deficient A. Since the linear system solver in [4]
provides condition number estimates, dependence can be tested. In fact, the condition
number estimate provides a measure of the sensitivity of the answers to uncertainties in
the data, which is useful to know.

This section is concluded with two numerical examples to illustrate our algorithms
for recovering X. All calculations were done on an IBM 3032 in REAL*8 arithmetic.

Let Xk denote the k x k principal minor of X and 8Xk Xk --Xk. As a measure of
the size of Xk, we use IIxll. As our first example we consider

U

for 0 -<_ -<_ 1, which has the solution

3 --e -t --e

3e- + e

1-e

-0.6 0.2 1.8)0.8 -0.6 -2.4
-0.4 -0.2 1.2

In Table 1, we tabulate the error I]SXkIIF for various values m. In this case h 1 /m. The
"exact" answer X used for k < n is the computed X corresponding to m 128. The
largest condition number was O(103).

TABLE

m k=3 k=2 k=l

4
8
16
32

.13x10-1

.10x 10-3

.15x10-5

.59 x 10-7

.13x10-2 .42x 10

.88 10-4 .11 x 101

.77 x 10-5 .15 10-2

.56 x 10-6 .17 x 10-3

.48 x 10-3

.29x10-5

.17 x 10-6

.22 10-7

.49 10-1 .97 10

.45 10-2 .81 10-1

.47 10-3 .17 10-1

.54 x 10-4 .40 x 10-2

As our second example, we use
--t --2t

(e +e )U --t --2te

which has the solution

X=
0.5 -1.5
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The results are given in Table 2.

4
8

16
32

k=2

TABLE 2

k=l

.49x10-1

.17x10-3

.47x 10-5

.27 x 10-6

.52x10-3 .22x10

.53 x 10-4 .48 x 10-1

.43 x 10-5 .71 10-2

.29 x 10-6 .95 x 10-3

The original matrix of coefficients X can be recovered from our computed

!-1.4182431 1.0000000\

X=/\ 0.24331553 -1.5817550/’1 k 1,

by imposing some auxiliary conditions. Recalling that X P x p-1 where P is of the
form

we see that

(1 0)P=
P1 P2

Xll Xll
plX12

X12
312 --P2 2

pX2
321 plXll "[-pEXEl----plX22,

P2

plx12
322 -" X22.

P2

If we require that .12 .21, u2(0) 0 and .12 0 uniquely determines

p 0.1635, P2 2.0000,

and hence, correct to four digits, we have the following approximation to X"

-1.4997 0.4996
0.4995 -1.4993/"
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COMPUTING OPTIMAL LOCALLY CONSTRAINED STEPS*

DAVID M. GAY?

Abstract. In seeking to solve an unconstrained minimization problem, one often computes steps based
on a quadratic approximation q to the objective function. A reasonable way to choose such steps is by
minimizing q constrained to a neighborhood of the current iterate. This paper considers ellipsoidal
neighborhoods and presents a new way to handle certain computational details when the Hessian of q is
indefinite, paying particular attention to a special case which may then arise. The proposed step computing
algorithm provides an attractive way to deal with negative curvature. Implementations of this algorithm have
proved very satisfactory in the nonlinear least-squares solver NL2SOL.

Key words, unconstrained optimization, negative curvature

1. Introduction. Many unconstrained minimization algorithms employ a
sequence of quadratic approximations qi" Rn- [, =0, 1, 2,... to the objective
function t*: . Using them, they determine a sequence x0, x l, x2," of points
which (usually) are ever better approximations to a local minimizer x* of 0". Given the
current iterate x xi and quadratic model q qi, these algorithms usually compute the
next iterate x/ xi+x in one of two ways. Either they determine a Newton step s such
that tC(x + s) is minimized, then set x/ x + As, where A >0 is chosen so that *(x + As)
<q*(x), or they choose a neighborhoodN Ni of 0 and a point s* N which minimizes
q(x + s) over s N, and they set x/ x + s*, having taken care in choosing N that
tC*(x +s*)<C*(x). Algorithms of the latter sort have an intuitive appeal: t# often
approximates tO* well only in a neighborhood of x, and these algorithms attempt to
achieve the maximum function reduction possible on an educated guess at such a
neighborhood. This paper concerns itself with choosing s* in this sort of algorithm,
given x and an N of the reasonable form described below. Since we can expect the
quadratic approximation q to q* only to be accurate in a neighborhood x +N of the
current iterate x, we shall refer to a point s* that minimizes q (x + s) subject to s N as
an optimal locally constrained (OLC) step.

Suppose now that we have g n and a symmetric n x n matrix H t" such that
(x + s)=*(x)+gs +srHs. (We regard vectors as column vectors and use super-
script T for "transpose". Superscript -T means "inverse transpose".) Of course, we
have in mind that g’-Vt#*(x) and H-" TEq*(x) in a suitable sense. We lose no
generality in assuming x 0 and *(x)= 0, so that

(1.1) tO(s) gs + sTHs.
For the rest of this paper we assume that N has the form

(1.2)

where D R"" is nonsingular, I1"11 denotes the Euclidean norm I1"11= (i.e., IlYll
(y y)/2), and 6 > 0. Some of the algebra below is simpler if D is the identity matrix L It
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is possible, in effect, to arrange this by a change of variables. Let

(1.3a) g Ds,

(1.3b) =D-rg,
(1.3c) D-THD-1,
(l.3d) r (y -. ilyll_<_ },

and

(1.3e) o (g) rg + gs Hi.

Then 0 (s) q3 (g) and s e N if and only if g e N, so in proofs we may just as well deal with
ff and/(r, for which/} L as with and N. Therefore we may assume without loss of
generality in the proofs below that D L It is often useful in practice to choose D L
e.g., to reflect scale in the components of s, so we leave D in the statements of some
results.

Some of the proofs below are simpler ifH is a diagonal matrix. We may assume this
without losing generality, because we can also arrange for it, in effect, by changing
variables. pecifically, since H is symmetric, there exists an orthogonal matrix U
such thatH UUr is diagonal with nonincreasing diagonal elements. Thus if U,

s Hi, and := Ug, then (ff)= (g) and ff if and only if g e .
In many applicationsH is positive definite. In others, however, H may have one or

more nonpositive eigenvalues. This may happen, for instance, when H comes from the
"augmented model" in the NL2SOL algorithm [DenGW80]. We therefore consider
the general case whereH may be indefinite. The scheme we are discussing thus provides
an appealing way to deal with negative curvature.

In the next section we show that an OLC step s* satisfies (H + aDrD)s -g for
some a 0 such that H +aDrD is positive semidefinite. Our treatment differs from
that of Goldfield, Quandt and Trotter [GolQT66] in that we consider the special case
where H +aDrD is (nearly) singular. This case requires special handling, which we
discuss in 3. In 4 we give a complete algorithm for computing s*, and we discuss
numerical experience with it in 5.

The present work builds on that of many others. Among the first papers to consider
computing an OLC step was that of Marquardt [Mar63], in which * was a nonlinear
sum of squares. (The paper of Levenberg [Lev44] that is often mentioned in the same
breath actually considers a somewhat different step, one that minimizes (x + s)+
[[Ds[[2.) Goldfeld, Ouandt and Trotter considered a general* but restricted themselves
to the case where H+aDrD is positive definite. Hebden [Heb73] gave an interesting
algorithm that computes a good approximation to s* when H +aDrD is suciently
positive definite and that otherwise computes what often would be a reasonable step.
Mor6 [Mor78] refined Hebden’s scheme and specialized it to a good algorithm for the
case where * is a sum of squares. The algorithm we give in 4 incorporates Mor6’s
refinements of Hebden’s scheme along with a new, often more reasonable way to
handle the case of a (nearly) singular H +aDrD. When specialized to least-squares
problems, the new algorithm computes the same step as does Mor6’s, but may expend
less work in the special case.

2. Characterizing s*. The following characterization of an OLC step s* lies at the
heart of the algorithm in 4 for approximating s*.

THEOREM 2.1. I[ andNare given by (1.1) and (1.2), i.e., (s) :=g +sHsand
N :={y e R" [[Dy[[ 6 8} with >0, then s*Nminimizes (s) over sN i[ and only if
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them exists a* >- 0 such thatH + a*D7,D is positive semidefinite,

(2.1a)

and

(H + *D7,D)s* -g,

’"-> h,, and (2.1) has the form

(2.2a)

and

(2.2b)

(Only if). Suppose s*

(H + a *I)s* -g

IIs*ll- i* > 0.

minimizes q over N. By the second-order necessary
conditions in Theorem 4 of [McC76], there exists a*=> 0 such that (2.2a) holds and
either a* 0, IIs*ll and H is positive semidefinite, or else a*> 0, IIs*ll- and

(2.3) yT,(H+a*I)y>-O forall yRnwith ys*=0.
The "only if" assertion thus holds if a * 0, so assume a* > 0. In this case (2.3) implies
that H + a*I has at most one negative eigenvalue, so hi -> -a* for < n and we must
show that h, =>-a*.

If gn 0, then (2.2a) implies that hn + a* 0 or s*, 0. If s*, 0, then (2.3) implies
h, + a* -> 0. The "only if" assertion thus holds whenever g, 0.

Suppose gn 0. There clearly exist c* ->a* > 0 and s* Rn such that h, + a ->0,
(H+a*I)s* -g, and IIs ll--IIs*ll- . It suffices to show that a =a Now (2.2a)
implies (s*)7,Hs*=-gs*-a*62, so o(s*)=(grs*-a*62)/2. Similarly, q(s*)=
(grs. 7".,-a’62)/2. Since (H+a*I)s* (H+a*I)s* -g, we have g s
-(s*)r(H + a I)s* and gTS* --(S*)r(H + a *I)s* so

(2.4) q(s*)- q(s*) (a* a *)[62 (s*)rs*]/2.
If a* < a *, then(h,+a*)s*=(h,+a *)s,=-g,#Oimpliess* * s* and the Cauchy-
Schwarz inequality then implies 6z- (s*)rs * > 0, so q (s*) < q (s*). This contradicts the
choice of s*, so we must have a*= a*, and the proof of the "only if" assertion is
complete. (The key equation (2.4) also follows from Theorem 7.1 of [Gan78].)

(If, uniqueness). Suppose s*N and a*=>0 satisfy (2.2) and that H+a*I is
positive semidefinite. Since N is compact, there exists an s* N that minimizes q, and
by the "only if" part proved above there exists a >_-0 such that (2.2) holds with

s* * *)= (s*).replaced by a and We must show that a* a and q(s
First consider the special case g 0. If h, _-> 0, then (2.2) implies c* a 0 and

s* =s7 =0 unless hi=O, whence tp(s*)=tp(s*)=O. If h, <0, then the positive
semidefiniteness of H +a*I implies a*_>--h, >0, and (2.2) implies re*=-h,. The
same holds for a*, so (2.2a) implies s/* s =0 for hi # hn, and (2.2b) implies
h,=h. (S)2=y’.h,=h. (S)2= 62, whence tp(s*)=q(s*)=h,,62/2. Thus the "if" asser-
tion holds and a* is unique when g 0.

Now suppose g # 0 and let rt(a) := II(H + aI)-agll for a > -hn. Extend the domain
of r/to -h, by defining r/(-h,):= lim_._h. r/(a). If gi # 0 for at least one with hi hn,
then r/(-h,) +oo; otherwise r/(-h,) is finite. In either case r/(a) is a strictly decreasing
function of a. If h, ->_0 and rt(0) _-< 6, then (2.2) cannot hold with a* > 0, so a* a 0.
In this case (2.2a) implies that gi 0 whenever hi hn =0 and that s* s =-gi/hi

(2. lb) IlDs*ll 6 ira* > 0.

This a* is unique.
Proof. Without loss of generality, D=L H =diag (hx,’’ ", h,) with hx >=h2 >-
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otherwise, so q(s*) 0(s*). If h, < 0 or n(0) > 6, then a* and a must be positive, and
(2.2b) and the strict monotonicity of r imply that a* a s uniquely determined. From
(2.2a) we deduce as above that (s*) 0 (s*). In all cases we thus find that s* minimizes
over N and a* is unique.
The next section discusses approximating s* when H+a*DrD is singular or

nearly singular, so it is interesting to consider the case of exact singularity. From (2.1) it
follows that H +a*DrD can only be singular if -a* is the least eigenvalue of
D-rHD-1 and the projection of D-Ig onto the eigenspace of D-rHD- corresponding
to -a* is zero. In the notation of the above proof, H + a*I is positive definite whenever
gi 0 for at least one with hi hn. When H +a*DrD is singular, s* has the form
s*= lim_,. (H + aDrD)-ag + D-av, where v is an eigenvector of D-rHD- corre-
sponding to the eigenvalue -a*.

3. (Near) Singularity in H+t*DrD. When g 0 (as we henceforth assume), it is
usually possible to compute an approximate OLC step s as

(3.1) s s(a)=-(H +aDrD)-Ig,

where a -> 0 is chosen so that H + aDrD is positive definite and IIDs(c)ll is near & Such
a step s exactly minimizes q (given by (1.1)) on an approximation to the "trust region"
N given by (1.2). If H + a*DT"D is singular in (2.1), however, then it may be impossible
to compute a suitable s in this way, because it can happen that IlDs(a)[I is considerably
less than for all a that makeH + aDrD positive definite. And ifH + a*DTD is nearly
singular, then computing a sufficiently large s(a) may be impractical or at least unduly
costly. Of course, we could simply accept a "short" s(a). But if H has a significantly
negative eigenvalue and is a good approximation to the current true Hessian V20*(x),
then it may prove well worthwhile to compute a step g such that Dg has a significant
component in the direction of an eigenvector .of D-’HD- corresponding to the
smallest eigenvalue. In what follows we describe a simple way to compute such a step g.
This step approximately minimizes (to within a prescribed tolerance) on the exact
trust region N of (1.2).

We assume for the rest of this section that D-THD-1 has eigenvalues h,
h2, , hn with h -> h2 .>-" => hn. We also assume that H is not positive definite and
hence that h, <= 0.

When h, -<- 0, the algorithm of 4 maintains a lower bound r/on acceptable values
of a such that r <=-h,. If a >-h, yields IIDs()II< , then

(3.2a) rt -<- -h _-< a* =<
It will be convenient to let

(3.2b) 0 c r.

We may regardH + c*DrD as nearly singular if we encounter an a > -hn for which 0 is
sufficiently small (in the sense made precise in Theorem 3.2 below) and for which
ilDs()ll is unacceptably small, say

(3.3) IIDs()ll </,
for some prescribed B (0, 1), e.g. fl 0.75 or B 0.9.

Suppose now that (3.3) holds, and let g= Ds(a), g*= Ds*, D-rg, and/-
D-rHD-. Further, let U be an orthogonal matrix as in 1 such that UtYlUr=
diag (hi,. , h,), and let if= U, Uff, and if* Ug*. For hi > h,, we may expect thats. "--ff*, and for hi-’--h, we may expect ’ "--0. Thus it seems reasonable to consider
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computing an approximate OLC step by finding an approximate eigenvector of H
c.orresponding to h and adding a suitable multiple of D-v to s. Because of (3.2),
H / cI has an eigenvalue h, / c with 0 h + :: 0 (and eigenvectors cor-
responding to this eigenvalue are also eigenvectors of H corresponding to h). We
probably have a factorization of D-HD- + I, so for an arbitrary 1, e.g. 2, it
should be easy to compute v by the inverse power method such that

(3.4a) lv[[ 1,

(3.4b) II(o-rnD- + X)vll 0.

Given such a v, we may compute

(3.5a) g s + D-v,
with chosen so that Ilogll and (g) is minimized. Specifically:

LEMMA 3.1. If $() (s + rD-v), and

(3.5b) (2-11Osll2)/EvOs +sign (vTDs){(vTDs)2 +
(with sign (vrDs)= 1 or -1 g v rDs =0), then z minimizes $(z) subject to the
constraint liDs + vll .

Proof; There are two values of z for which IIg + rvll , namely

(3.6a) r+ -% +4(%)+z -I111,
(3.6b) r_ -% 4(%=+=I11i.
Because of (1.1) and (3.1),

() (s) +z% +rv +vv

Using (3.6) and (3.4a), we find

-(,+- z_)(Y%)(a +

But +aI is positive definite, so vr( + aI)v >0 and $(r.)> $(r_) if and only if
s v < 0. Thus the choice z -s v + sign (g%)4(g%)2 + 82 ’ I111= minimizes subject
to I1+ rvll & which is equivalent to z

To simplify the notation, we assume for most of the rest of this section that D 1
and H =diag (hx, h2," , h,), as in the proof of Theorem 2.1.

We now consider how to tell whether the 0 of (3.2) is small enough that the relative
difference between (s*) and (g) is small, i.e., that

(3.7) e,(g) ,(s*)- ,(g) 0

for some prescribed e (0, 1), e.g. e 0.1. To this end, it is convenient to define

-gi g < n,

(3.8) gi(r) hi + r

[- sign (g,) 46- E si(r)2 if n.
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In the event that hi h, for some < n, we assume without losing generality that
gi-" S*i "-0 and interpret (3.8) as specifying i(a*)=0. If g, 0, then we assume that
sign (g,) -sign (s,*) in (3.8). Thus, in all cases g is a smooth function with g(a*) s*
and IIll - .To bound tp()-o(s*), we shall first bound o(g(a))-o(s*), then bound o(g)-
o((a)). To bound (g(a))-(s*), it is convenient to define if" [a*,)by

2

(--gi hig 1 (2 g )(3.9) h+r + + h
,< 2()2] in(hi+7)
1 hn62 1-- in g(2 + hi + h,)/(hi + )2.

Note that
Since a-a* 0 by (3.2), we thus find

(3.10) O(a)- O(a*) 06 2.
Now (3.2) and (3.3) imply

while (3.8) implies ], (a *) , (a )] N6. Together with (3.9) and (3.10), these yield

(f()) e(s*) () (*) g.[.( *) .()]

N (1 +)06.
Now we deduce a bound on (f)-((a)). For brevity, denote (a) by . Then

(1.1) gives

(3.13) ()-((a))=gr(-)+gs s-gs H.

To derive a convenient expression for fr, it is useful to let

(3. 4) [= (+)v,

so that Hv [-av. Note from (3.4b) that

(3.15) II/11 0.
Since s +v and ][fll 6, we have 2+2s 62- ][s[l2 and

H srHs +2vrHv + 2srHv srHs + 2(v r[_ a + 2(sr[_ as
sTHs [=- I111] +[+2s]r[.

Similarly, we have g s + e,, where e, (0,. , 0, 1)r is the nth standard unit vector
of and & is chosen so that lll (with sign (g,)= sign (s,)), and we find

H sHs + h[=- IIsll].
Together with (3.13), these equations imply

gr(v &e,) +w(v + 2s)

Now (3.1) and (3.14) give g =-sr(H +aI)v =-srf, so

) <e)) f-ag..
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The definitions of tr and t imply Itrl_-< and It[-< 8, so (3.3), (3.4a), (3.11), and (3.15)
combine with the above inequality to give

()-(())_-<0+0/ (/ + 1/2)0.
Combining this with (3.12) and Theorem 2.1, we finally obtain

(3.16) 0 -<- o(g)- o (s*) _-< (2/3 + 1/2x + 1)0.
This leads to

TI-IEOREM 3.2. Let fle (0, 1), e (0, 1), and e (1, oo) be given. Suppose g 0 and
that a > 0 renders H +aDrD positive definite; also suppose that s := (H +
satisfies IIDsll < fl,. ff q is a lower bound on the largest eigenvalue o]’ -D-rHD- and
0 := a -rt satisfies
(3.17) 0 _-<-(IIDsll- grs)/(4/3 + x + 2),

then ]’or any v N" with Ilvll- x and II(D-rHD- / aI)v[[ <- x0, it [ollows that

v rDs + sign (v rDs){(v rDs) + 6 -IIDsllZI/

satisfies (3.7), i.e., eo(g) <- o(s*)- q(g) <- O.
Proof. In view of (1.3), we shall assume D L From (1.1) we have

,(s) gs /s (H / I)s & Ilsll
T Tg s 1/2g s 1/2,,llsll

1/2(gs -llsll).
Together with (3.16), (3.17), and the fact that (s)<0, this implies eo(s) <
q(s*)-o(g). But Lemma 3.1 implies 0(g)---0(s), so (3.7) follows.

4. Choosing . If either H is indefinite or the Newton step s(r)= -H-ag is too
large, then computing an OLC step s* requires finding a solution a* to the scalar
nonlinear equation [[D(H+aDrD)-agI[=8. There are many iterations for approxi-
mating such an a* (see Gander’s excellent discussion in [Gan 78, 6]). In view of the
fast convergence reported by Mor6 [MorT8], we prefer to use an iteration proposed by
Reinsch [ReiT1] and independently by Hebden [Heb73], together with Mor6’s
(modification of Hebden’s) safeguarding scheme. Let

(4. a) g,( ):= IID(H + .DD)-gll--,-.
The basic iteration is Newton’s method applied to O. Thus if iterate a renders
H +aDrD positive definite but yields an unacceptable step, then we compute a
tentative value c7+l a-O(a)/O’(a) for a+x, i.e.

(4.2a) +1 + IIDsll= llDsll-
[,sDD(H+DD)-DDs]"

where

(4.2b) s s(a) -(H + aDrD)-Xg.
We also maintain lower and upper bounds l and u on a* and, if H is not positive
definite, a value 0 such that - is an upper bound on the smallest eigenvalue of
D-rHD-. (For convenience, we set -1 ifH is positive definite.) We discuss below
how these quantities are updated. Once l+x and u+x have been determined, we obtain
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a safeguarded ak+l from the rule

t’k+ iflk+l<=ffk+l<Uk+l and k+l >’ok+l,
(4.3) Ok+l max{10-3 Uk+t,(lk+lUk+l)1/2} otherwise.

Again assume variables have been changed so that D I. To solve linear systems
involving H+akI, e.g., to compute S(ak) in (3.1), we recommend attempting to
compute the Cholesky (or LDLT) decomposition of H + akI (see e.g. [Ste73, 3.3]). If
this works, then we may regard H + OtkI as numerically positive definite (provided the
Cholesky factor has no zeros on the diagonal). Otherwise for some between I and n we
may express the leading principal x submatrix of H + tkI as LML, where L is a
lower triangular matrix with nonzero diagonal and M is the diagonal matrix
diag(1, 1,..., 1, tz). Both L and /.t are readily available as a byproduct of the
attempted factorization, and/x <_-0. We compute z L-tel (i.e., solve Lzr- et), where
et (0, 0, , 0, 1)T at. Then ()T (H +OkI)()= zTLML =efMet =/z, so tz/llzll2 is
a Raleigh quotient for H + akI, and ( /llzll=) -_< 0 is an upper bound on the smallest
eigenvalue of H. Hence we set

(4.4a) nk/1 lk + Olk
Z

(4.4b) Uk/ Uk

and choose tk+1 tk (which will force a safeguarded choice of ak+l in (4.3)).
If H + akI is positive definite then the concavity of O [Rei71] implies that the

Newton iterate ffk+l given by (4.2) satisfies ffk+l -< a*. In this case we recommend using
the following variation on Mor6’s update prescription for Ik and Uk: if d/(ak)< 0, then
choose

(4.5a) Ik+l
(4.5b) Uk/l Uk.

Otherwise choose

(4.6a) /+1 max {/, a+l},

In both cases, let ’0k+l ’Ok.
To obtain the initial bounds It and u l, we obtain lower and upper bounds EMIN

and EMAXon the eigenvalues ofH from the Gerschgorin circle theorem (optimized by
the diagonal scaling technique described below), and we exploit the following obser-
vation: the a* of Theorem 2.1 is such that 8-- Ilgll/(A /c*) for some A between the
smallest and largest eigenvalues of H. Thus

(llgll/) EMAX _-< a * <-Ilgl/_ EMIN,
and we let

(4.7a) 11 max {10,-EMAX},

(4.7b) ul !-EMIN,

where lo is given by whichever of (4.4a) or (4.5a) applies, with cr_l 1-1 0.

(4.6b) Uk+ Olk.
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To compute EMIN and EMAX, we use a special case of the scaling by diagonal
matrices considered in [Var65]. Specifically, we find a diagonal matrix having n 1
diagonal entries o unity and one other positive diagonal entry such that the Gersch-
gorin lower bound on the spectrum ofH-1 is as large as possible, and we use this
bound as EMIN. This is quickly done (in O(n 2) operations) as follows: Compute the
off-diagonal row sums

(4.8a) tri E [Hil

and find k such that row k gives the minimum Gerschgorin lower bound:

(4.8b) Hkk -trk min {H# trill <_- ] <_- n }.

For ] # k, let 0i denote the auxiliary quantity

(4.8c) 0i 2

and compute

(4.8d) EMIN= Hkk -max {0. +(0 + IH,. k}.

EMAX is computed similarly: with tri as in (4.8a), find k such that

(4.9b)

For k, let

Hkk + trk max {Hii + o’ill -< ] _-< n }.

(4.9c) 0i

and compute

(4.9d) EMAX Hkk + max I0i + (0 + k}.

We begin the quest for a* by trying a 0. If this proves unsatisfactory, then we
(prey) (prey)compute 11 and ul by (4.7-9). If acceptable values a and 6 of a and 6 from a

previously computed OLC step are available, then we obtain 51 from a rule which
J. J. Mor6 [private communication] has found helpful:

(4.10) 51
(prev)o (prey)

If O (prey) and 8 (prev) are unavailable, then we simply set 51 0.
To prevent excessive iterations, we deem the step s s k computed from ak

acceptable if f16<--l[sk[[<--3,6 for some specified /3 (0, 1) and 3,(1, co). (Hebden
[Heb73] and Mor6 [Mor78] choose /3 =0.9 and 3,= 1.1. In connection with an
algorithm like that of NL2SOL [DenGW80], where  /lls(  v)II or either equals
unity or two or lies in [0.1, 0.5], Dennis and Schnabel suggest/ 0.75 and 3’ 1.5
[DenS79]. Our computational experience with NL2SOL slightly favors the former
choice.)

In practice, D is usually a diagonal matrix, so the explicit change of variables (1.3)
is easily performed, and we recommend actually performing it when H is given
explicitly. WhenH has the form JTJ, g has the form jTr, and J and r are given explicitly,
on the other hand, we prefer the technique advocated by Mor6 [Mor78], i.e., using a
QR factorization of [D1/2] to compute s.
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When H is given explicitly and g 0, the method described above for computing a
reasonable approximation s to s* may be summarized as follows"

ALGORITHM 4.1.
Compute H := D-THD- and g := D-g.
If H is positive definite, then"

Compute the Newton step sN)= -H-Ig.
If IIs  ’ ll <_- then halt and return s := D-1s(N).
Set r/1 -1 and determine l0 from (4.5) with a-1 I-1 0.

Else [H not positive definite] compute r/o and 10 from (4.4) with c-1 1-1 0 and
set r/1 r/o.

Compute EMIN and EMAX by (4.8) and (4.9), and compute ll and ul from (4.7).
(prev)If a and t (prev) are available, compute from (4.10); otherwise let -0.

Compute a from (4.3).
For k 1, 2,.

If H / akI is positive definite, then:
Set T/k+1 ’l’k and compute S

(k) -(H + akI)-lg.
If =< IIs  )ll_-< v, then halt and return s := D-isk).
Compute tk+l from (4.2) with D :- I.
If IIs  )ll then

If Tk " 0 and 0 := ak r/k satisfies
(3.17) with s s Ck), then
Compute v satisfying (3.4).
Compute g from (3.5).
Halt and return s := D-lff.

Compute lk+l and Uk+ from (4.6).
Else Ells > compute lk+l and Uk4-1 from (4.5).

Else [H + OkI not positive definite] set Ck / ak and compute rlk 4-1, Ik 4-1, Uk +
from (4.4).

Determine ak+ from (4.3).
After an OLC step has been computed, it is often necessary to compute another

OLC step from the same g and H with a new value of 8. To handle this situation, it is
worthwhile to modify the initial part of Algorithm 4.1 to take advantage of the extra
information that is available. For example, if has been increased, then u can be set to
the minimum of the value given by (4.7b) and the last value u Cold) of Uk, while if 8 has
been decreased, l can be set to the maximum of the value given by (4.7a) and the last

(old)value/od) of lk. In either case, */1 can be set to r/ and ff can be computed from (4.2)
with Co c Cold).

5. Numerical experience. For use in NL2SOL [DenGW80], we have implemen-
ted two versions of Algorithm 4.1: GQTSTP is designed for use with a general H, while
LMSTEP deals explicitly with J (or its QR decomposition) when H has the form J7-j, g
has the form Jrr, and J is a reatangular matrix with at least as many rows as columns.
Both codes make special provision for the case in which an OLC step is to be
recomputed with a new but the same g and H. To handle D, which both codes assume
to be a diagonal matrix, GQTSTP explicitly changes variables, whereas LMSTEP
follows the procedure recommended by Mor6 [Mor78]. (Both codes use (3.17) with 4/9
replaced by 4fl(K + 1). A referee pointed out a cancellation that let us change the old
4/ (< + 1) in (3.17) to the present 4/.)

The way these codes deal with (near) singularity in H + a*DrD deserves further
discussion. Both detect this case by test (3.17) [with / :=/3(r + 1)]. In the case of
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LMSTEP,H Jrj never has a negative eigenvalue, so in the event of true singularity in
H + a*DrD, we would have a* 0 and D-’HD-1 positive semidefinite, and any v in
the null space of D-’HD- would be orthogonal to D-rg, whence q(s +D-v) c(s).
LMSTEP therefore returns without modification a step s for which (3.3) and (3.17)
hold. GQTSTP similarly avoids replacing s by g s + o’D-v in cases where c(s) and
q(g) would not differ significantly. Specifically, if c(s)-c(g)<-(e/3)c(s), then
GQTSTP returns s rather than g. To assure that (3.7) holds in this case, GQTSTP uses
(3.17) with e replaced by 2e/3. Both codes used e 0.1 and K 2 in the tests reported
below.

We have also used GQTSTP in HUMSOL [Gay80], a code for solving general
unconstrained minimization problems in cases where the Hessian of the objective
function is explicitly available.

Table I gives some statistics on the performance of LMSTEP and GQTSTP in
NL2SOL and HUMSOL. The column headed "Test" tells which test problems and

TABLE
Statistics from test problems.

Test Module

A LMSTEP 0.9 1.1
A LMSTEP 0.75 1.5
A GQTSTP 0.9 1.1
A GQTSTP 0.75 1.5
B GQTSTP 0.9 1.1
C GQTSTP 0.9 1.1

All (Non-Newton) OLC Steps

.No. of % of k k
Steps Total

1228 80.6 1.46 5
1207 79.2 1.30 4
254 57.7 1.85 9
351 55.1 1.51 7
949 55.0 2.00 10
831 98.2 3.59 19

Special Case

% of k k
OLC

5.5 1.49 3
3.8 1.54 3
2.8 1.86 4
2.6 1.44 3
0
8.1 10.24 18

optimizer were used in obtaining the results in the corresponding row. Test A is
NL2SOL running on the same problem set (and under the same conditions) used to
generate [DenGW80, Table II]. Tests B and C involve HUMSOL running on some of
the unconstrained minimization test problems described in [MorGH81] (with D I):
test set B consists of all the problems and starting guesses suggested in [MorGH81] with
the exceptions of Biggs EXP6, Penalty function II with n 4, 10, and Chebyquad
with n 8, 9, 10. Test set C consists of Biggs EXP6 and Chebyquad with n 8, 9, 10 (all
with the standard starting guess). The column headed "No. of Steps" gives the total
number of non-Newton steps computed (those for which a is positive in (3.1)), and the
column labeled "% of Total" tells what percentage these were of all the steps computed
by the module in question. The average value of k when Algorithm 4.1 halted (averaged
over the non-Newton steps) appears in the column labeled "k mean", and the
maximum such value appears under "k max". In the columns headed "Special Case"
are the percentage of non-Newton steps in which (near) singularity in H + a*DrD was
detected and the mean and maximum final values of k for these steps. (All computations
were performed on the IBM 370/168 at the Massachusetts Institute of Technology
using double precision versions of NL2SOL and HUMSOL compiled by FORTHX
with OPT 2.)

The problems in test set C deserve special comment. On Biggs EXP6, the starting
guess given to HUMSOL and all subsequent iterates that it generated were points at
which H was indefinite. In the 378 steps that it computed for this problem (before our
function evaluation limit was reached), GQTSTP detected the special case 59 times at
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widely scattered iterates. For the Chebyquad problems, H was also indefinite at the
starting guess and the special case was detected on the first step computed. The
relatively poor behavior of Algorithm 4.1 on these problems (in terms of the number of
iterations it took) raises the question of whether one can significantly improve upon this
algorithm, but the poor behavior is sufficiently rare that we believe Algorithm 4.1 to be
useful as it stands.

Had the mean values of k been much greater than two in the case of LMSTEP or
four in the case of GQTSTP, then it would have been possible to save some time in these
modules by preprocessing the input matrices to a sparser form: by reducing J to
bidiagonal form in LMSTEP or reducing D-1HD-1 to tridiagonal form in GQTSTP
(see [Ste73, 7.5 and 7.1 and the references cited therein]).

After all the effort we spent in studying the special case, it is somewhat disappoint-
ing to see it detected so rarely by GQTSTP. On the other hand, checking for it in
subroutines like LMSTEP and GQTSTP appears well worthwhile, since it is often
detected at much smaller values of k than the limit that one otherwise might impose.

Acknowledgments. I heartily thank Jorge J. Mor6 for some helpful discussions,
Burton S. Garbow for providing subroutines for the test problems used in testing
HUMSOL, and the referees for their constructive comments.
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FAST NUMERICAL SOLUTION OF TIME-PERIODIC PARABOLIC
PROBLEMS BY A MULTIGRID METHOD*

WOLFGANG HACKBUSCHf

Abstract. The discrete solutions of parabolic problems subject to the condition y(., T) y(., 0) of time
periodicity are solutions of large sparse systems. In this paper we propose a multigrid algorithm. It is a very
fast iterative method. The algorithm can easily be generalized to nonlinear problems and to conditions of
the type y(., 0)= A(y(., T)) (A is a nonlinear mapping). The computational work for solving the periodic
problem is of the same order as the work for solving an initial value problem (y(., 0) given). Numerical
results are reported for a linear and a nonlinear example.

Key words, multigrid method, numerical solution, parabolic differential equations, periodic time
condition, time-periodic parabolic problem

1. Introduction. We consider the periodic parabolic equation

(1.1a) --+Ly =gl, (x,t)Q,
ot

(1.1b)

(1.1c)

where

By g2, (x,t)_,

y(., T)= y(. 0), x FZ,

l)cR",. F=0f, Q=fx(0, T), E=F(0, T).

L L(x, t) is an elliptic differential operator, e.g.,

(1.2) L(x, t)=
0

aii(x, t)0___+ ai(x, t)
0

i,]=10X-- OXi /=1 -iXi
d; a (x, t),

whereas B B(x, t) is a boundary operator, for instance, Bu u or Bu Ou/On. (1.1c)
is the requirement of T-periodicity1.

We will also treat the nonlinear problem (1.3a, b), (1.1c):

(1.3a) 0y+ L(y) 0, (Q),
ot

(1.3b) B(y) 0, (g).

For a discretization of (1.1a-c) we have to introduce step sizes At and Ax. Assume
Ax h, At Ah 2. Let fh be a grid of width Ax. We define

Ih {V At e (0, T]: v integer}, Qh ’h X Ih.

Then a suitable finite difference (or finite element or least square) discretization is of
the form

(1.4a) MhYh gh, (Qh),

(1.4b) Yh (’, T) Yh (’, 0), (l’h);

* Received by the editors October 14, 1980.
t Mathematisches Institut, Ruhr-Universit/it Bochum, Postfach 102148, D-4630 Bochum 1, Germany.
This condition may be generalized to u(., 0) Au(., T) + a for a suitable operator A. Also a nonlinear

equation u(., 0)= A(u(., T)) is permitted.
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e.g., (MhYh)(X, t)=[yh(x, t)--yh(X, t-At)]/At+Lh(X, t)yh(X), where Lh is a discrete
counterpart of L.

In the case of the nonlinear problem (1.3a, b), (1.1c) the equation (1.4a) becomes

(1.5a) Mh(yh) 0 (Qh).

Numerical methods for solving the system (1.4a, b) of difference equations are
proposed, e.g., by Tee [12] and Osborne [7], [8]. Another iterative method due to the
author is explained in [2]. Nonlinear periodic problems are studied in the recent paper
[10] of Steuerwalt.

Here we propose a fast method for solving the linear problem (1.4) as well as the
nonlinear problem (1.5). The algorithm is iterative, but usually one step of the iteration
yields sufficient accuracy. The method is based on the representation of the periodic
problem (1.1a-c) and of its discretization (1.4a, b) by the equations (2.2) and (2.4),
respectively, defined in 2. Sections 3 and 5 contain the description of the linear and
nonlinear algorithm. Numerical examples are reported in 4 and 6. Further applica-
tions of this multigrid iteration are described in [3], [6], and in [5, refs. 7, 8, 10].

2. Retormulation o| the problem. We introduce a certain linear mapping K such
that the original problem is equivalent to (2.2) given below. It must be emphasized that
this mapping K is only of theoretical interest. We need no explicit representation of K.

Consider the usual initial-boundary value problem (1. l a, b) with

(2.1) y(x, o)= yo(x), x .
Denote the result of (1.1a, b) and (2.1) at T by (yo):

?(yo) :- y(’, T).

Obviously,/(. is an affine mapping. Hence, it can be rewritten as

(yo)=Kyo+

where [(x) := y(x, T) is the result of (1.1a, b) and (2.1) at T in the case of yo(x) 0.
Kyo is y(., T), where y is the solution of (1.1a, b) (with gl 0, g2 0) and (2.1).

With this notation the condition (1.1c) becomes

(2.2) u Ku +]’,

where u y(., 0)= y(., T) is a function defined on l). Equation (2.2) is equivalent to
the original problem in the following sense.

STATEMENT 2.1. I]’ y is a solution o]’ (1.1a-c), then u y(., T) satisfies (2.2). I]’ u
fulfils (2.2), then the solution y o[ the initial-boundary value problem (1.1a, b) and (2.1)
with yo u is a solution o[ (1. l a-c).

Obviously, (2.2) is the formulation of the periodic parabolic equation as an integral
equation. K is the integral operator (Kyo)(X)= a k(x, T; sC)yo(s) ds, where the kernel
k(x, t; ) satisfies (1.1a, b) with gl 0, g2 0 and k(x, 0; s) Dirac’s delta function at

The discrete initial-boundary value problem consists of (1.4a) and

(2.3) yh(X, 0) Yoh(X), X "h.
By similar considerations we obtain the equivalent discrete equation

(2.4) Uh KhUh +]:h,

where Uh Yh(’, 0) Yh(’, T). ghYOh "t-fh is the solution of (1.4a) and (2.3) restricted to
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t= T. If, for instance, the discretization (1.4a) for the homogeneous problem
(gl 0, g2 0) is the implicit scheme

y,, (x, t) y,, (x, At)
At +Lh(X)yh(x,t)=O, Xeth, teIh

with Lh independent of t, then Kh is the matrix

Kh [I + AtL]-fIat (I identity matrix).

Hence, the computation of ghYOh requires T/At-times the solution of a linear equation
[I 4- AtLh]Yh gh with different g’s.

For the following it is important to study the "smoothing property" of K (cf.
Wahlbin [13]).

STATEMENT 2.2. Under usual assumptions on the differential operatorL (ofsecond
order, cf. (1.2)) and B, the operatorK is a bounded mappingfrom L2(’) into the Sobolev
space Hi(O).

Proof. For the case of L L(x) independent of compare Bramble and Thom6e
[1]. The general case is treated by Tanabe [11, (5.136)].

COROLLARY 2.1. /f n 1 [i.e., (Xo, xl)c R] or if O is a sufficiently smooth
boundary, Statement 2.2 holds with HI() replaced by H2().

Let L2h(h) andH (fib) be the discrete counterparts of L2() and HS(12), respec-
tively. The discrete analogue of Statement 2.2 is

STATEMENT 2.3. /f (1.4a) is the implicit difference scheme (or implicit Galerkin
method), the matrix Kh of (2.4) is a mappingfrom L2h(h) into HXh (h) [or HEh (h) (cf.
Corollary 2.1) or at least Hh+ (Oh) (O < 1/2, cf. [4])] uniformly bounded with respect to h"

Here and in the following C denotes a generic constant not depending on the
discretization parameter h.

An easy proof of (2.5) can be given in the case of the model problem

ut-uxx=gx(x,t),

u (x, t) g2(x, t) at x 0,

u (x, 0) yo(x),

discretized by the implicit scheme

0<X <

0<t<T,

0<x<Tr

0<t<T,

At-[u(x, t)-- u(x, t-- At)]-- h-2[u(x h, t)- 2u(x, t) + u(x + h, t)] g(x, t).

Setting gx 0, g2 0, and

yo(x) E c,, sin t,x, N -,
gives that the amplification factor of each sin ,x-term is

(cf. Richtmyer and Morton [9]). Inequality (2.5) holds if and only if the amplification
factor is -<C(1 + u2)-s/2. Obviously, this is true with s <= 2 for the implicit scheme
without any limitation to zt.
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In the case of the Crank-Nicolson difference scheme (cf. [9]) the amplification
actor becomes

[(1 2Ath -2 sin2 )/(l+2Ath-2sin2 l)]
-T/At

0<u<N.

This expression is =<C(1 + u)- if the time step At is restricted by

const, h
At <_-- -1.log (h

For At const, h we obtain inequality (2.5) only with s 0.
The explicit difference scheme

At-[u (x, t) u (x, At)] h-2[u (x h, At) 2u (x, At) + u (x + h, At)]

gl(x, t)

is stable only if At--< h 2/2. For the strengthened condition

At<=AhZ; A <
one can prove that the amplification factor ]l-4Ath-2 sin2 (vh/2)]r/A is bounded by
C(1 + v2)-. Hence, (2.5) holds for s -<_ 2.

3. Linear algorithm (multigrid iteration of the second kind). Let ho > hi >" >
ht >" be a sequence of decreasing step sizes, e.g.,

At0(3.1) ht Axt =, Att=Ah =--- (/= level number).

We replace the subscript h by l’

L L,(I,,), H H, (12,),

Kt Kh,, ul Uh,, fl fh,, Yl Yh,, ’l

Define the prolongation

pl.t-" L_ -->L
by piecewise linear interpolation, and let

rt-.z" L --> L-
be the restriction to the coarser grid f-l. Then

(3.2) III-p,-r-,ilm< Ch l, 0-<s<=2

is valid. For the implicit discretization with At A Ax 2 the following consistency
condition holds’

(3.3) Ilgl-rt-. rl-.lgllH,-t2,_l <- Cht-, 0 <- s <-_ 2.

STATEMENT 3.1. Let ho be small enough. The assumptions (2.5), (3.2), and (3.3)
are the main conditions ]’or proving that the following algorithm has a rate ofconvergence
proportional to h l.

Proof. Compare [3].
The following algorithm is explained in [3]:
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ALGORITHM. Let be the actual level number, be the number of iterations, and

f be the right-hand side f of (2.4). The input value u contains the starting value uk)

(k+i)(kth iterate), while the output value is us ((k + i)th iterate).

procedure mgm (i, l, u,/); integer i, l; array u, f;
if 0 then u := (I- Ko)-1 f else
begin integer j; array d, v;

for := 1 step 1 until/do

begin u := Kl * u +f; d := r_l, (u-K u-f);
u := 0; mgm (2, l- 1, v, d);
U := U--Pl,l- * V;

end end;

Since the rate of convergence rapidly tends to zero (cf. Statement 3.1), one step
of the iteration usually yields a result with sufficiently small iteration error, provided
that the coarsest grid size ho is small enough. It is advisable to call the procedure mgm
once at every level 1, 2,..., l:

Uo := (I Ko)- */Co;

(3.4) for / := 1 step I until do

begin uj := PJa- * ui_ 1; mgm (1,/’, ui, f.) end;

The procedure mgm requires a repeated performance of the mapping vl Kv +f.
If h h is the finest grid size, i.e., the grid size h of the original discrete problem
(1.4a, b), the mapping v--Kv +f := y(., T) requires the solution of (1.4a) with
yl(., 0) := v instead of (1.4b). The computation of f is not necessary.

If h > h is an auxiliary grid size, Kv can be computed by solving the homogeneous
problem (1.4a) with gh 0 and Yt(’, 0) := vs. Then Kv results from y(., T).

For the coarsest grid size ho the solution of (I-Ko)-lfo can be obtained in two
different ways. The first method requires the computation of the matrix I-Ko and its
LU-deeomposition in a preprocessing phase. Then (I-Ko)-Ifo is computed as

U-L-fo. This method is preferred if Ax0 is coarse enough, i.e., if the number of
equations (=dim L) is small. The second method can be applied if any other method
for solving (1.4a, b) (h ho) is available. Let h := h0. For given fo define the right-hand
side gh of (1.4a) by gh := Mhh, where )Th(’, t) := 0 for < T and )Th (’, T) := fo. Solve
(1.4a, b) with this choice of gh resulting in Yh. Then u0 (I-Ko)-fo is the initial and
final value of Yh: U0 Yh(’, T).

STATEMENT 3.2. (Operation count). One step of the algorithm mgm at the level
requires 2-fold solving of l)l’-Kttdl +fl at h ht and 3.2-a-fold solving of vt_--

K_Vl- at h h_ (u 1, 2,. , l- 1). At the lowest level, h ho, 3.2-z linear
systems (I- Ko)-Xfo are to be solved.

If the computational work of Vl KtVl is

(3.5) W Cat-{ Ax-{" Ch-lh-["-9 C’ 2(’+z)t (cf. (3.1)),

and if the work taken by solving (I-Ko)-fo is neglected, one step of the iteration requires
work o[



MULTIGRID METHOD, TIME-PERIODIC PARABOLIC PROBLEMS 203

For n 1 (one space variable) we have It <-_ 4 Wl. The use of the program (3.4) is
only slightly more expensive than only one iteration at the level I. Under the condition
(3.5) the work required by (3.4) amounts to [1- 2-"-2]-1It <=It _<- 4.6Wt.

4. Numerical example for the linear algorithm. Consider the periodic problem

2t-1 [ 2t-1 ]-x(1 -x)+(4.1a) Y’ Yx+ 2-x [ (2-x)2]
0_-< t--<_ 1, 0__<x_<_l,

(4.1b) y(O, t)= y(1, t)=O, O_-<t_-< 1,

(4.1c) y(x, 0)= y(x, 1), 0-<x _<- 1.

The exact solution is y(x, t)= (t-1/2)2x(1-x)/(2-x).
According to (3.1) we choose the step sizes

ht Axt 2-2- Atl 4-I

The finest grid (l 4) is defined by h Ax and At 2-6. The rates Ol of convergence
of the multigrid iteration at the level are: pl =4E-4, p2=2E-6, p3 =2E-7,
p4 6E- 8. Table 1 contains the results uj (1 =< j <= 4) of the loop (3.4). The total error
is max (lut(x)- y(x, 0)1: x O, Axt, 2Axt," 1}. It is the sum of the discretization error
and of the iteration error. But because of the very fast convergence the iteration error
is much smaller than the discretization error, as can be seen from the last column.

TABLE 1
Errors of the first iterate u1) resulting from (3.4) for the example (4.1a-c)

h Axt Ah

16 16

32 64

64

total error iteration error

1.71E-2
4.19E-3 3.4E-8
1.04E- 3 1.7E- 12
2.61E-4 1.5E-14
6.52E-5 0

5. Nonlinear algorithm. Let (1.5a) and (1.4b) be the discretization of the non-
linear periodic problem (1.3a, b), (1. lc). According to 2 we denote the mapping
Yh(’, 0)- Yh(’, T) [Yh solution of (1.5a)] by h(" ): Yh(’, T) h(Yh(’, 0)). Again, the
problem (1.5a), (1.4b) is equivalent to Uh .h(Uh). Replacing the subscript h ht by
we write

(5.1) Ul l(Ul).

In the following we need the more general problem

(5.2) ut t(ut) +f/,

where ft is some small perturbation.
Assume that (5.2) has at least one solution, denoted by u bt(ft). For 0 there

must be some iteration

(5.3) Vo--o(Vo, .fo)

that converges to the solution 4o(/o) of (5.2), e.g., Newton’s iteration.
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The nonlinear multigrid method nmgm described below can be used as proposed
in (3.4)"

(5.4)

to := suitable approximation of Uo do(0);
for/" := 1 step 1 until do
begin/)-1 :=//-1-,/-1(//-1);

u. := Pj-I.j * u.-1; nmgm (1,/, ti, 0);
end;

The parameter of nmgm have the same meaning as those of the procedure mgm. /1--1
must be an approximation of u-I =b-l(0) (=solution of (5.1)). /-1 is the defect

procedure nmgm (i, l, u, f): integer i, l; array u, f;
if 0 then u := o(U, f) else
begin integer ]; real s; array d, v;

for ] := 1 step 1 until do
begin u:=,t(u)+f;

d := rl-l,t * (U--t(U)--f);
s := if.lldll-- 0 then 1 else 0/lldll;
d := f-i +s .d;
v := tl-1; nmgm (2, 1-1, v, d);
U := U--Pt,l-1 * (1)-

end end;

[1" is the norm of L. The positive number p ensures that IIdll <= II - ll / is sufficiently
small. For a discussion of this algorithm we refer to [5]. Another application of nmgm
is reported in [6].

Note that the algorithm can be improved. Whenever nmgm is called with u :=
the statement u := :(u) can be replaced by u := u-/.

It must be emphasized that the algorithm nmgm needs no derivatives ,
For 0 only we need a derivative if Uo o(Uo) +fo is solved by Newton’s iteration.
Usually, the modified Newton iteration with (to), to fixed, instead of (Uo) is
applied.

6. Numerical example for the nonlinear algorithm. We consider the example of
Steuerwalt [1O]:

(6.1a) u, u,, +cl (c-u’*)+c3, O<=x ---<5,

(6. lb) ux (0, t) ux (5, t) 0, 0 <= <= p,
(6.1c) u(x, p) u(x, 0), O <= x <= 5,

O<-t<=p,

where

p .0085, cl .1958291075E- 8, C2 10,

c3(x, t)= 24 933.892 52. exp if 0-< <= .0005,
0 otherwise.

For the solution of the initial-boundary value problem (6.1a, b) and (2.1)
we introduce the step sizes Ax 5IN and At p/M. Here, At denotes the maximal
time step. According to the definition of c3, the actual step size is t+l-t, where
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t+l rain (t + At, tt) with tt .0005 if t < .0005 and tt p, otherwise. The iteration
(5.3) is chosen as Newton’s iteration with a derivative evaluated at a fixed approxima-
tion tTo. Note that tTo has to approximate only Uo bo(0), not the actual value ut, since
we have to approximate the solution of (5.3) only for small fo.

The direct application of the multigrid algorithm to the problem (6.1a-c) yields
no fast convergence. The choice ho Ax0 as coarsest grid size results in a divergent
iteration. For ho Axo 45- we obtain slow convergence. The rates of convergence are
about 0.6. The reason of this behavior is the smallness of the time interval [0, p]. The
smoothing effect is too weak. Note that the constant C of (2.5) tends to infinity as 1/p
if p --> 0. This is also true if At is decreased for fixed h Ax.

Nevertheless, there is an easy remedy. Extend the coefficients of (6. la) periodically
to the interval [0, 5p] or [0, 10p]. Obviously, a periodic solution of (6.1a-c) is a solution
of the extended problem, too.

Table 2 contains the rates of convergence for different choices of the finest and
coarsest grid sizes Axt hl.

TABLE 2
Rates of convergence of the nonlinear algorithm for the example (6.1a-c)

Finest
grid

Time interval" [0, 5p] Time interval’ [0, 10p]

size Coarsest grid size Axo: Coarsest grid size AXo:
2 4 8 " 4 8

.64 .55 .53 .41

.55 .42 .28 .24 .16 .08

.20 .11 .05 .05 .03 .02

If we apply the loop (5.4) with ho Ax0 and

t0 (900.16, 488.39, 371.66)

we obtain one iterate ul1) per level. The results at x 0 are shown in Table 3. The
iteration error of u<4x) is of the order of the discretization error of u4.

TABLE 3
Results of (5.4) at x 0 for the example (6.1a-c) with [0, 10p] as time interval.

Exact discrete
Level Ax hi Ah ul1) (0) solution at x 0

0 2 10p 900.

4s- 10p/4 881 890.
10p/16 879.4 888.62 s

3 s__16 10p/64 888.20 888.42
4 3 10p/256 888.3688 888.3730
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A PROJECTED LAGRANGIAN ALGORITHM FOR
NONLINEAR I1 OPTIMIZATION*

WALTER MURRAYt AND MICHAEL L. OVERTONt

Abstract. The nonlinear 11 problem is an unconstrained optimization problem whose objective function
is not ditterentiable everywhere, and hence cannot be solved efficiently using standard techniques for
unconstrained optimization. The problem can be transformed into a nonlinearly constrained optimization
problem, but it involves many extra variables. We show how to construct a method based on projected
Lagrangian methods for constrained optimization which requires successively solving quadratic programs in
the same number of variables as that of the original problem. Special Lagrange multiplier estimates are used
to form an approximation to the Hessian of the Lagrangian function, which appears in the quadratic program.
A special line search algorithm is used to obtain a reduction in the 11 objective function at each iteration.
Under certain conditions the method is locally quadratically convergent if analytical Hessians are used.

Key words, ll-approximation, l-norm minimization, data fitting, absolute deviation curve fitting,
nondifferentiable optimization

1. Introduction. The problem we wish to solve is

liP" min {Fl(x)lx R n}

where

Fl(x) Y.
i=1

and the functions/i" R" R are twice continuously differentiable. The function F(x)
is called the l function, and lxP is referred to as the Ix problem. The 11 problem is an
unconstrained optimization problem in which the objective function has discontinuous
derivatives and hence it is inappropriate to use a standard unconstrained minimization
method to solve it. The problem is equivalent to the following nonlinearly constrained
problem in which both the objective and constraint functions are twice continuously
differentiable"

ELP" min Y’. uixeR,uR

r*)(x,u)>O, i=1,2 rn" tr=-l, 1subject to

" (x, u u, o’1, (x).where c

We could solve ELP using a method for the general nonlinear programming problem,
but this is very unattractive since m, the number of extra variables, may be large. A
method can be derived which exploits the special structure of problem ELP, essentially
reducing it back to a problem with n variables. One special feature of ELP is that the
11 functionF is a natural merit function which can be used to measure progress towards
the solution of ELP. Such a merit function is not generally available for the nonlinear
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programming problem without the introduction o a parameter such as a penalty
parameter.

The method we adopt to solve liP consists of two parts at each iteration: (1) obtain
a direction of search by solving and perhaps modifying a quadratic program based on
a projected Lagrangian algorithm for ELP, and (2) take a step along the search direction
which reduces the 11 function. The general approach is similar to that described for the
minimax problem by Murray and Overton [24]. The structure of the quadratic program
to be solved is, however, considerably different from the minimax case; this is described
in full in subsequent sections. We use a special line search algorithm which is closely
related to the one used in the minimax case. This is discussed in 7; the details may
be found in [23]. We note that no convexity assumptions are made. We concern
ourselves only with local minima.

A number of other algorithms have been proposed for solving the nonlinear 11
problem. These will be discussed further in 10, after our algorithm has been described
in full. At the time of this writing, no other algorithms related to projected Lagrangian
methods using second order information have, to our knowledge, been published.
However, Bartels and Conn are currently doing some related work.

It is important to distinguish liP from the problem of solving a general nonlinear
equality-constrained optimization problem by minimizing an "11 penalty function", i.e.,
P(x)=F()(x)+pYi=llCl)(x)l, where p>0 and F() and cl), i=1,...,k, are
respectively the objective function and equality constraints. Clearly a suitable positive
constant can be added to F() so that P(x) has the form Fl(x) on any given region of
interest. However, the important point is that minimizing such a penalty function is a
very special case of I1P since the solution is of no interest unless p is large enough that
all the constraints are zero at the solution, and hence that only one of the terms in the
sum, namely F()(x), is nonzero at the solution. A related comment can be made for
a similar penalty function constructed for inequality constraints, although in this case
the connection with I1P is not so direct. We mention this point because such penalty
functions have received a lot of attention recently, e.g., [10], [18]. In this paper,
however, we are concerned with solving I1P without any such restrictions on the
solution.

1.1. Notation. All vectors are column vectors, but for convenience we will write
(x, u) for (,). Define (:, fi) to be a solution of ELP. It follows that is a solution to liP
and

FI()= E ,.
i=1

Let (x (k), U (k)) denote the kth approximation to (, fi).
At each iteration of the algorithm (x <k+l), u <k+x)) is obtained by setting

X
(k+l)--

X (k)’Jt- ap and U (k+l)=

where p is the direction of search in R" and a, a positive scalar, is the steplength, and
the absolute value of a vector denotes the vector of the absolute values of the
components. Note that this choice of (x k/), uk/)) immediately guarantees that all

(cr) (x (k)) > O, i=1,.." m, trthe points {(x <k), u(k))} are feasible for ELP, i.e., c
(+1)-1, +1. It also follows that for each i, at least one of the pair of constraints (c-1), c

must have the value zero. We will be interested in the case where the other constraint
in the pair is also zero at the solution, i.e., the corresponding function f is zero.
Therefore, at any point x we define the active set offunctions as those which we think
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will have the value zero at the solution , based on the information at x. This set will
usually include all functions with the value zero at the point x and may also include
some with nonzero values. The exact procedure for selecting the active set at each
iteration will be discussed in 8 and procedures for modifying this choice will be
discussed in 5.

We define t(x) to be the number of active functions at x and write the vector
of active functions as )(x) R’. Define (x) to be the diagonal square matrix of order
whose ith diagonal component is 1 if/(x) >-0 and -1 otherwise. Define Q(x) to be

the n matrix whose columns {t3(x)} are the gradients of the active functions. Similarly
we define [(x) R’-’ to be the vector of inactive functions at x and define (x) and
V(x) to be respectively the (m t) (m t) diagonal matrix of the signs corresponding
to f(x) and the n (m t) matrix of gradients of the inactive functions. We also define
t7 and t to be the subvectors of u corresponding to f and/

We define the active constraints at x to be both constraints of each pair correspond-
ing to the active functions plus the one constraint with zero value of each pair
corresponding to the inactive functions. We can order the active constraints so that the
vector of active constraint values is given by

-r,(x)/(x)
x a -x)

with t .(x)f(x), =,(x)f(x), by definition of u. Define (x) to be the (m +n)x
(m + t) matrix whose columns {} are the active constraint gradients. We can order
the variables {u} so that

A(x) I,,,-t 0 0
o I,

Here Is is the identity matrix of order s. Note that has full rank if and only if Q has
full rank.

We define Y(x) to be a matrix with orthonormal columns spanning the range space
of V(x) and define Z(x) to be a matrix with orthonormal columns spanning the null
space of Q(x)r. Provided Q(x) has full rank we have that Y(x) has dimension n t,
Z(x) has dimension n (m t), and

Y(x)Ty(x) It, Z(x)TZ(x) In-t,

Y(x)Z(x) fZ(x)Z(x) o.

Let g be the gradient of the objective function of ELP, i.e., the (n + m)-vector:

where e R’- and g, e R are vectors of all ones.
The Lagrangian .function associated with ELP is

L(x, u, A)= g,r +r-Ar(x)
where A R"/t is a vector of Lagrange multipliers. The gradient of L(x, u, A) with
respect to x is g-A. Define WE to be the Hessian of the Lagrangian function with
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respect to (x, u). Then

W=
0

where W is the Hessian of L(x, u, ) with respect to x only, i.e.,

W(x, x)= E
i=1

Define Z to be a matrix with orthonormal columns spanning the null space of A,
i.e., ATZ 0. It follows from the definition of A that the first n rows of Z can be

T Ztaken to be Z, the matrix which is orthogonal to Q. Thus ZW. , the Hessian of
L(x, u, A) projected into the null space of A, can also be written as Z7"WZ.

We will use p to denote a vector in R n/" whose first n components are the
direction of search vector p. We write

where/ and/ corres.pond to t and
Often we will omit the arguments from the various vectors and matrices [, V,, etc. when it is clear that they are evaluated at x k). We use the notation , Q, L

to denote , 1’, Z evaluated at (, fi) with the active set of functions correctly chosen,
i.e., consisting of all those functions with the value zero at .

1.2. Necessary and sufficient conditions. In the following, we refer to the con-
straint qualifications and the necessary and sufficient conditions for a point to be a
minimum of the general nonlinear programming problem as defined in [12]. The
necessary and sufficient conditions for (, ) to be a local minimum of problem ELP,
and therefore for to be a local minimum of problem liP, are simplifications of these
general conditions. It can be shown that the first-order constraint qualification always
holds for ELP. The conditions therefore reduce to the following:

First-order necessary condition. If (, ) is a local minimum of ELP then there exists
a vector .of Lagrange multipliers ( R "/t such that

g 0 and ,( > 0.

Second-order necessary condition. If (, fi) is a local minimum of ELP and the
second-order constraint qualification holds, then LrW(, )L, the projected Hessian
of the Lagrangian function, is positive semi-definite.

Sufficient condition. If the first-order necessary condition holds at (, ), the
Lagrange multipliers are all strictly positive, i.e., > 0, and LTW(, )L is positive
definite, then (:, fi) is a strong local minimum of ELP. Thus in terms of liP, FI(c) <F(x)
for all x such that Ix-1 < 6, for some 6 > 0.

In the case where all the {/i} are linear it is well known that a solution must exist
with n active functions at . Then, normally the matrix is null, which implies the
second-order conditions are also null. The nonlinear problem, however, can have a
unique solution with anything from zero to n functions active at .

Alternative derivations of optimality conditions for lP are given in [7], [14].
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2. Use of the equivalent problem ELP. At every iteration we wish the search
direction p to be a descent direction for F1, i.e.,

F’ (x k), p) < O,

where F’I (x <k), p) is the directional derivative

lim
1

h_O -(fi(x(k) + hp)-F(x(k))).

It is easy to see that F (X (k), p) is also given by

(2.1) f
,Ir,,,o[Tp + ,ir,2=o I Tpl

where vi Vfi. We have the following:
THEOREM 1. If PE is a first-order feasible descent direction for ELP, i.e.,

(2.2) grpE <0

and

(2.3) 7 ()" (o’)c p >= 0 for all i, tr such that c O,

then p is a descent direction forF and hence a sufficiently small step along it must result
in a reduction in F.

Proof. Suppose for the moment that the active set consists of those and only those
functions which are zero at x (k), so that we can use the notation developed for this. We
then have Arp >__ 0, and hence

-;9p+O >__o,
_->o,

It follows from (2.1) and (2.2) that

Fi (x (k), p) <-- rp +r< O.

It is possible for p to be a first-order feasible direction without being a feasible
direction for ELP. This causes no difficulty since u <k+) is set to [f(x(k+)) and hence it
is always possible to obtain a lower feasible point for ELP if (2.2) and (2.3) hold, by
reducing F1 along p.

A second desirable property for p arises from considering the active set of
functions, i.e., those we expect to have the value zero at }. We wish to choose p so
that the first-order change in these functions predicts that they will all have the value
zero at x (k) +p. An equivalent condition is"

(2.4) I"p -.
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This condition is implied by the following condition on the (n + rn)-vector PE"

Co

Strictly speaking, (2.5) is a stronger condition than the pair of conditions (2.4) and

(2.6) ArpE -> -e.
However, since the only difference is that the variables {ui} are required to be on their
bounds and it will become evident later that this does not affect the choice of search
direction, for simplicity we will require that p satisfy (2.5).

Thus we see that one view of ELP is as a device to obtain a search direction p
along which F1 can be reduced in the line search. We emphasize again that we wish
(2.2) and (2.3) to hold so that p is a descent direction for F1, and that the active set
nature of the algorithm indicates that (2.4) and hence (2.5) should also hold.

3. Derivation and solution o| QP subproblem. The solution of ELP is at a
minimum of the Lagrangian function in the null space of the active constraint Jacobian.
The usual method for solving a general linearly constrained problem is to approximate
the objective function by a quadratic function and then determine the search direction
by solving some appropriate quadratic program (QP). Consider therefore the quadratic
program:

TW, (k))pE TQPI" min 1/2p, (x(k), A + g pE
PE

subject to Arp

where A (k) is an estimate of

The constraints of QP1 are equivalent to (rearranging equations)"

(3.1)

The last two equations imply that

(3.2) /3 Qp -/

Since grp rff + it follows that p can be obtained by solving the following QP
in only n variables:

QP2: min pTW(x(k), A (k))p +T
P

subject to Q
In order to solve QP2 we introduce the matrices Y and Z defined in 1.1. These

may be determined from the QR factorization of Q"

where R is an upper triangular matrix of order t. If has full rank and ZrWZ is
positive definite, then the unique solution of QP2 may be expressed as the sum of
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(4.1)

(4.2)

(4.3)

Let us therefore define

(4.4)

two orthogonal components

(3.3) p Ypy + Zpz

where py R and pz e R n-t. We have

(3.4) Qrp Rrpy -,
and py is determined entirely by the constraints of QP1. The vector pz is given by the
solution of

(3.5) (ZrWZ)pz Zr Q,. + WYpy).

We shall also wish to refer to the related QP with homogeneous constraints"

QP3" min 1/2p 7"Wp +
p

subject to Qrp 0.

The solution of this is given by p Zqz, where

(3.6) (ZrWZ)qz Z

At every iteration of our algorithm an attempt is made to set the search direction
p to the solution o QPZ, but or various reasons this may be inadequate. In subsequent
sections we explain what action is taken in these circumstances.

4. Lagrange multiplier estimates. Let us first suppose that X
(k) is a minimum on

the manifold defined by the current active set. Then for some A we have

=g.

If we write A (, /, -), this is equivalent to

+ o,
A=g,,

Equations (4.1) and (4.2) then reduce to

(4.5)

It follows from (4.3) and (4.4) that the first order necessary condition ,( >-0 is
equivalent to

where ,k is r at . The vector r here plays the same role as the vector w in the linear
case described by Bartels, Conn and Sinclair [6].

The question we face in this section is how to define the vector ol Lagrange
multiplier estimates at any point x tk), dropping the assumption that it is the minimum
on the manilold. Multiplier estimates are needed to define the matrix W and to
determine whether constraints should be deleted from the active set. It is better to use
new inlormation obtained at the current point xk) rather than use the multipliers of
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the QP solved at the previous iteration. Such an estimate should in some sense
approximately satisfy the overdetermined system based on the first order necessary
conditions"

(4.6) A g.

Clearly it makes no sense to delete an active constraint corresponding to an inactive
function, since the corresponding variable ai will be reduced at the end of the iteration
to make the constraint active again. Similarly, only one active constraint of the pair
corresponding to an active function should be considered for deletion. These facts
combined with the fact that the search direction is being determined for a QP involving
only n variables indicate that a special estimate taking into account the structure of
ELP should be used, as opposed to the least squares solution of (4.6).

Ac" The special estimate ]’or ELP. The special estimate is required to satisfy exactly
those equations in (4.6) which are exactly the same as the equations holding at the
minimum on the manifold defined by the active set. Thus we define Ac to be the least
squares solution to the approximate equation (4.1), subject to the constraint that (4.2)
and (4.3) hold exactly. Equivalently we can define rc as the solution of the least squares
problem

(4.7) min zr + Q,[122.
It is then not necessary to explicitly form Ac, since checking whether a component of
r is greater than one in modulus is equivalent to checking whether a component of
or ,- is negative. Furthermore, using Ac to define W results in

m--t

w E + E + E
i=1 i=1 i=1

m--t

i=1 i=1

where is the ith diagonal element of. Thus rc may also be used to define W directly.
The vector rc can be computed directly from the OR factorization of V which

we introduced in the last section to solve QP2. The estimate is a first-order multiplier
estimate in the sense defined in [24].

Because at every iteration computing the search direction involves only the first n
variables of ELP, the multiplier estimate which is relevant to predicting whether the
steepest descent step in a subspaee of R" will be first-order feasible is ,c, not the least
squares solution to (4.6). Let us suppose that (rc) > 1 and that the constraint
-f.(x) is to be deleted from the active constraint set (i.e., ..is to be deleted from
the active function set). Define as ’ with deleted, and Z by

(4.8) lT"r=0, ,r=I,_,+x, 2=[Z z].

Now consider the gradient of the linear term in QP2, i.e., VE. Since vj is being deleted
from the active set it should be included in the gradient of an objective function to be
minimized in the null space of I7"r. Therefore define the steepest descent step in the
new null space to be

2s 22 + ).

(Here 3i has a positive sign since (rc)i > 1.) We then have the following result relating
the estimate rc to the first-order feasibility
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THEOREM 2. Assume V has full rank. ff (rc)j > 1, then

v s2>0.

Proof. We have the least squares characterization:

Thus

(Z T^v)Orc) z W’E.
By definition of Zs2 we have"

j /_,S

.)-(v z)(zf’ + z

(fz)(1- ())> o.

(The fact that Q has full rank implies that 3 0 and hence
It follows from Theorem 2 that setting p Zs2 defines a vector PE which is

first-order feasible with resPect to the deleted constraint ti_> -).(x), since pE is
first-order feasible with respect to the retained active constraint ti >-/(x). Note that
(zrc)i being > 1 is equivalent to (b).i, the multiplier corresponding to the deleted
constraint, being negative. Clearly if (rc)i <-1 and hence b.)j < 0 then the deleted
constraint would be t _-> )(x), the steepest descent step would be r(Q 3i),
and this would have a negative inner product with

At" The least squares estimate in the larger space. Define At to be the least squares
solution to (4.6). It is worth emphasizing that although the signs of the components of
At determine the feasibility of steepest descent steps for ELP in the null space of
T with a row deleted (see [17] and [24]), the estimate At is not relevant to the
algorithm we describe for solving the 11 problem. This is because (unlike in the minimax
case of [24]), it is the range and null spaces of Q, not , which determine the search
direction at each iteration. Unlike the minimax case, At and Ac are not scalar multipliers
of each other. It will often be the case that a component of Ac is negative while the
corresponding component of At is positive, indicating that if the corresponding con-
straint is deleted, the steepest descent step (with respect to ELP) in the new null space
in the (n + m)-dimensional space will not be feasible with respect to the deleted
constraint, while the steepest descent step (with respect to QP2) in the new null space
in the n-dimensional space will be first-order feasible. The converse is much less likely
to happen, i.e., where a component of Ac is positive while the corresponding component
of At is negative, but it is possible to construct such an example.

Quite apart from its deficiencies, the estimate At is more expensive to compute
than Ac, since it involves the factorization of a larger matrix. If m is large compared to
n, then the additional effort may be prohibitively high. There is a slight simplification,
however: since the last rows of A have full rank and are orthogonal to the others, it
follows that the last t equations in (4.6) must hold exactly and hence a least squares
problem of slightly reduced dimension can be solved.

Clearly, it is undesirable to compute At. and we will not discuss this estimate any
further.
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Iw" A second-order estimate. A second-order multiplier estimate can be defined
as the solution to the consistent set of overdetermined equations

Alzw g + WpE.

The fact that the system is consistent implies that/xw can be obtained from solving

Vrw V, Wp

and there is no concern about solving the larger system. A negative component of
does not guarantee that either a steepest descent or Newton step will be first-order
feasible with respect to the deleted constraint.

Using the estimate zrc to define W. Both the estimates zrc and rw will be used to
decide when to delete functions from the active set. Since a function corresponding to
I( c) l > a will not necessarily be deleted from the active set, we note here that we use
rc to define W as follows"

W= zrV2/+ tiV2/ where
(4.9)

i=1 i=1

-1 if (rc)i <-1,

r 1 if (Trc)i > 1,
(Zrc)i otherwise.

5. Properties of solution of QP subproblem. In this section we examine the
properties of the solution to QP2. Initially, we assume that all functions with zero value
are included in the active set, and that V has full rank and ZrWZ is positive definite
so that the solution p given by (3.3), (3.4) and (3.5) is unique. The corresponding
solution to QP1 is pE, where/5 and/ are given by (3.1) and (3.2). We would like pz to
satisfy (2.2), (2.3) and (2.5). Clearly the constraints of QP1 ensure that (2.3) and (2.5)
hold. Thus the only question is whether pz is a descent direction for ELP, i.e., whether
(2.2) holds. If all the active functions have the value zero, then the following applies:

THEOREM 3. Suppose that/ 0, Q has full rank and ZTWZ is positive definite.
Then pE, the solution to QP1, is a descent direction for ELP provided it is not zero.

Proof. We have gpE +7 T,Qp by (3.1) and (3.2). Since = 0 we
have py 0 and p Zpz as defined by (3.5). Thus

Tg P p.T, QT"Zpz _pfz:(ZT"WZ)pz
by (3.5). Since zTrwz is positive definite, gp must be negative if pz O, i.e.,
p0. U

If p 0, then by (3.5) ZrQ, 0 and x (k) is a minimum on the manifold defined
by the current active constraints, and hence (4.6) is a consistent set of equations with
Ac AL. Thus either x (k) is the required solution, or one of the components of Ac is
negative or zero, i.e., 1(Trc)il >- 1 for some .

If p 0 and at least one of the multipliers is negative, i.e., I( c) l > 1, then it is
necessary to delete a corresponding function from the active set to obtain a descent
direction. If p 0, and the component o rc with largest modulus is + 1, corresponding
to a zero multiplier, then xk may or may not be a solution. We refer to Gill and Murray
[17] for the treatment of zero multipliers.

5.1. Nonzero active tunetions. In practice it will rarely be the case that f 0, so
we now drop this assumption. If we were sufficiently restrictive in the definition of the
active set (e.g., no active functions) we could force this condition to be true, but it is
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important for the efficiency of the algorithm not to be too restrictive in the choice of
active set. It could then happen that pE is an ascent direction for ELP. It is now necessary
to introduce some further notation. We denote the components of pE which correspond
to the orthogonal n -vectors Ypy andZpz bypEY andpEz respectively. More specifically,
we define:

(5.1) peg QTYpy and pEz

We have pE PEY d- PEz.
Without the assumption that/= 0, both pEY and pEz could be ascent directions

or ELP. If the component pEz is an ascent direction it can be replaced by

zqzl

where Zqz is the solution to QP3 and qz is given by (3.6). It is clear from Theorem 3
that this direction is descent for ELP unless it is zero. The motivation here is that if x
is too far away from the solution , the inhomogeneous constraints of QP2 may not
approximate the active functions at : and may impede the search, direction, but
minimizing the quadratic form subject to Qp 0 will give an adequate reduction in
the 11 function. We prefer to solve QP2 if possible since this is ultimately required for
quadratic convergence.

If the component PEY is an ascent direction the following theorem shows that a
constraint can always be found with a negative multiplier estimate. The interpretation
of this situation is that too many functions have been selected to be active and are being
forced to be approximately zero at xk) +p, thus forcing the inactive functions to
increase in modulus more than the active ones are decreasing.

THEOREM 4. Assume Qhas full rank and letpEgbe defined by (5.1). 7Ifg PEY O,
then for some ] eitherj >O and (zrc)i > 1, or f. < O and (zrc)i <-1.

Proof. It follows from gTpEY > 0 that

ef’rp->o.

A characterization of the solution o the least squares problem (4.7) is

Qrc YY ,.
Multiplying both sides by Ypg, we have from (3.4) that

T

and hence
T T^^rcf> .f.

Therefore for some A (rc)d" > l/ .l and the result follows. [3
It also follows from the above that if gTpEy O, then either f= 0 (covered by

Theorem 3) or, for some ], sgn ()(rc)j-> 1 (a multiplier estimate is zero or negative).
It is worth noting that Theorem 4 does not hold in general if other multiplier estimates
such as Ar and/v are substituted for Ac.
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It follows from Theorem 4 in conjunction with Theorem 2 that if pEY is an ascent
direction we can delete the active constraint corresponding to a negative component
of Ac to obtain a first-order feasible direction. As in [24], we will not actually take the
steepest descent direction ,,s in the new null space. Instead, we will first try computing
the Newton step Zq, defined by (4.8) and

(,Tw,,)q ,T V., + sgn (zrc)iV.)

where the ]th active function was deleted. If sgn (’c)]’q> O, i.e., ,,q is first-order
feasible in the sense of Theorem 2, then we take this as our search direction. Otherwise
we use Zr, where

(zTwz)-lb]_zTb

b VE( +sgn (zrc)jvj and z is given by (4.8). The proof that Zr is a descent direction
and is first-order feasible combines the methods of proof of Theorem 5 of [24] and
Theorem 2 above in a straightforward way, so we do not present it here. The motivation
for the use of Zr is that it combines the Newton step in the null space of the previous
active function Jacobian with the steepest descent step in the new direction made
available by moving off an active constraint. The steepest descent component may be
necessary to ensure the first-order feasibility, but we use a Newton component where
possible since it is likely to give a larger reduction in the 11 function.

The above explains how the direction of search is selected when a constraint (or
equivalently a function) is deleted from the active set in order to obtain a descent
direction when grpEy > 0. However, it also applies when we wish to delete a constraint
because it corresponds to a negative multiplier estimate which we consider reliable. It
is well known in the context of constrained optimization that it is inefficient to
accurately approximate a minimum on the manifold corresponding to the current active
set before moving off constraints with negative multiplier estimates. Section 9 gives the
details of the conditions under which such constraints are deleted from the active set.

5.2. Avoiding a rank-deficient Jacobian or an indefinite projected Hessian. If Q
is rank-deficient then the constraints of QP2 may not be compatible. Clearly it is
desirable to restrict the number of functions in the active set so that V has full rank.
The technique we use for doing this is identical to that described in [24] for the minimax
problem (except that instead of ordering the potential columns of by the size of {cj}
we order the potential columns of V by the size of I 1).

If ZrWZ is not positive definite then the vector p given by (3.3), (3.4) and (3.5)
is a step to a stationary point which is not a minimum of the quadratic form on the
linear manifold defined by the constraints and may even be a maximum. An alternative
direction of search which is satisfactory uses the modified Cholesky factorization of
[16]. This computes the Cholesky factorization of ZrWZ + E, where E is a nonnegative
diagonal matrix large enough to make ZrWZ +E numerically positive definite. The
modified Newton direction in the null space of 7- is then taken as Zqz where qz is
given by (ZrWZ +E)qz -zr(’,. It is easy to show that this vector is a descent
direction for lip provided it is not zero. For further discussion of alternative directions
of search and the possibility of encountering a constrained saddle point see [24].

6. Finite difference and quasi-Newton approximations to the Hessian. In practice
we may wish to use a finite difference or quasi-Newton approximation instead of the
analytical Hessians {V2fi}. In the former case we approximate WZ by differencing the
gradients {V/i} along the columns of Z. It is not necessary to approximate W itself,
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although it is necessary to approximate W(Ypy) if we wish to compute zrw. One point
to note here is that for the 11 problem W involves the Hessians of all the rn functions
{/i}, whereas in the minimax problem of [24] W involves only the Hessians of the
active terms. Since for many applications (particularly arising from data approximation)
m is much larger than this means that a finite difference approximation may be
considerably more expensive than a quasi-Newton approach for an 11 problem, while
a finite difference approach may be more efficient for a comparable minimax problem.

When a quasi-Newton method is used, two approaches are possible: approximat-
ing the full matrix W (see for example Powell [27]) or the projected matrix ZT"WZ
(see for example Murray and Wright [25]).

7. Determining the steplength. We use a special steplength algorithm tailored to
the 11 problem to obtain the steplength a at each iteration. This algorithm is presented
in [23]. The initial step ao is set to either one, or the shortest estimated step to a zero
of an inactive function, if this is less than one. Thus

ao min {1, a},

where

a min
/.i P [/’YP 0 and --< 0

8. Selecting the active set. Clearly it is necessary to be able to make a reasonable
choice of the active set at each iteration. If functions are required to have very small
magnitude to be included in the active set then the iterates will follow the constraint
boundaries very slowly and convergence will be slow. However if too many functions
are selected as active the directions of search may be poor. The active set strategy which
has been most successful in our numerical experiments is the same as that described
for problem IP in [24], with some slight modifications, as follows. We define the scaled
function values by 6 =(mlfil)/F1. Since there may be no active functions the first
decision is whether to include the smallest one (in absolute value) in the active set. This
decision is made in the same way as the decision of whether to include a second active
constraint in the minimax case, replacing the gradient vl by the gradient of the 11
function when no functions are active, i.e., VE.

9. Summary of the algorithm. The kth iteration of the algorithm using analytical
Hessians or a finite difference approximation to WZ is summarized as follows. The
case where W or ZT"WZ is approximated by a quasi-Newton method differs only in
that second-order multiplier estimates are not used. Some details of the algorithm may
be changed with more numerical experience; for example the multiplier test in Step 10
is somewhat arbitrary. All vector and matrix functions are to be evaluated at the current
point x.

ALGORITHM.
1. [Select active set.] Form 1/r, I, 17", ,. Let h
2. [QR factorization.] Factorize Q Y Z][0R].
3. [First order multiplier estimate and one component of search direction.] Solve
Rrc Yrh and R rpy 1

4. [Projected Hessian.] Form ZrWZ, where W is given by (4.9).
5. [Modified Cholesky factorization.] Factorize Z’WZ +E LDL7-.
6. [Termination criteria.] If Itr l and IIz hll are greater than prescribed toler-

ances then go to Step 7.
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Otherwise" if Izrcl < 1 and E 0 (Z’WZ numerically positive definite)
then STOP--x satisfies convergence criteria.
if max [(rc)il > 1 then go to Step 13.
if max I( c) l 1 then optionally try zero multiplier
procedure (see [17]).
if E 0 then optionally try saddle point procedure (see [24]
and [16]).

7. [Other component of search direction.] If E 0 then go to Step 12. Otherwise
solve (LDLr)pz Z"(h + WYpY).

8. [Second-order multiplier estimates.] Solve R’n’w yr(h + W(Y]y + Zpz)).
9. [Check whether too many functions active.] If h rYpy-rE>O (i.e.,

g p,y > 0) then go to Step 13.
10. [Check multiplier estimates.] Let I(.zrc)il maxl(zrc)il and let pl maxl(zrc);I,

I(rw)l)- and p=(llZhll2+llf’]12)/(l+F1/m). If p2<min(1, pl) and
21(zrc)i-(n’w)l<p then go to Step 13. (This condition ensures that the
accuracy with which the minimum on the manifold has been approximated
and the accuracy of the multiplier estimates are sufficiently high compared to
the uncertainty of the signs of the multipliers.)

11. [Direction of search.] If h TZpz < 0 (i.e., gPEz < 0) then set p Ypy + Zpz
and go to Step 14.

12. [Alternative direction of search.] Solve (LDLT)qz -ZTh and set p Zqz.
Go to Step 14.

13. [Delete a term from the active set.] Delete 1. from the active set where
I( c) l =max [(rc)i[, and compute the direction of search p as explained in
5.1.

14. [Line search.] Replace x by x + ap, where a is obtained from the steplength
algorithm discussed in 7. That p is guaranteed to be a descent direction for
lip follows from Theorem 1 and the discussion in 5.

10. Relationships to other algorithms. We begin this section by discussing
algorithms for problem liP when the functions {fi} are linear. The equivalent problem
ELP is then a linear programming problem, although it is not in standard form. The
connection between the linear 11 problem and linear programming (although using a
different formulation from ELP) was observed by Charnes, Cooper and Ferguson [8].
Since then a large number of different methods have been proposed for solving the
linear 11 problem by various linear programming formulations. References to many
such methods may be found in [2], [4], [5], [31 ]. Probably the most widely used method
is that of Barrodale and Roberts [4], which solves a variation of ELP put in standard
form by a primal simplex method taking account of the special structure. An alternative
approach taken by Claerbout and Muir [9] and Bartels, Corm and Sinclair [6] is to solve
the problem directly by minimizing the piecewise linear function. However, it is
possible to think of these methods as linear programming methods applied to ELP, by
considering the connection between the vector w in Bartels, Corm and Sinclair (which
corresponds to zr in our nonlinear algorithm) and the simplex (Lagrange) multipliers
of ELP, just as we do for the nonlinear problem. This is the approach we prefer since
it retains the familiar linear programming terminology while avoiding transforming
ELP to standard form.

A completely different approach to the linear 11 problem is to solve a sequence of
weighted least squares problems as the Lawson algorithm (see [28]) does for the linear
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Lo problem. This was suggested by Schlossmacher [30] but Gallant and Gerig 15] show
that this method can be unstable.

It is somewhat surprising, given the number of linear 11 algorithms, that there has
been comparatively little work done on the nonlinear 11 problem. Osborne and Watson
[26] solve the nonlinear 11 problem by solving a sequence of linear 11 problems. The
solution to each linear 11 problem, obtained by a linear programming technique, is used
as a search direction along which the minimum of F1 is found by an exact line search.
We are aware of only two published methods for the nonlinear 11 problem which use
second-order information, both of which appeared only recently. El-Attar, Vidyasagar
and Dutta 11] suggest a method related to the penalty method for nonlinear program-
ming in which a sequence of increasingly ill-conditioned unconstrained optimization
problems are solved. McLean and Watson [22] propose both a first-order Levenberg-
type of method similar to those of [1], [21] for the minimax problem, and a method
which uses second-order information. The latter is a two-stage method similar to that
of Watson [32] for the minimax problem, in which successive linear programming
problems are solved until it is thought that the active set has been identified, whereupon
a switch is made to solving a system of nonlinear equations by Newton’s method. The
system has order n / t, since the variables and multipliers are obtained together. Since
may often be close to n (t equals n in the linear case), the systems of equations

which are solved may be much larger than the ones we solve.
We are not aware of any published methods of the projected Lagrangian type for

problem liP, although we understand that Bartels and Conn are currently doing some
related work. It would be possible to construct a method related to ours but which
solves an inequality-constrained quadratic program variant of QP1 at each iteration
as Han [19] does for the minimax problem. However, such a QP has n + m variables
and it is not possible to transform this directly to an inequality-constrained QP in n
variables (as we transform QP1 to QP2). It would be necessary to solve the inequality-
constrained QP by a special-purpose method taking into account the special structure,
just as the Bartels, Conn and Sinclair method essentially solves the linear program
equivalent of ELP by a special-purpose method. See [24] for remarks concerning the
relative merits of solving the equality and inequality-constrained QP’s.

11. Asymptotic convergence results. We can make use of the known asymptotic
convergence results for nonlinear programming since in the limit our method becomes
a projected Lagrangian method for constrained optimization applied to the special case
ELP. We assume that the {]’i} are twice continuously differentiable, that ,TITV is
positive definite, that has full rank, that ]r[ < 1 (A* > 0), and that in a neighborhood
of the solution the steplength is always one. All of these assumptions correspond to
standard assumptions in proofs of superlinear convergence for constrained optimiz-
ation. Under these conditions our algorithm is locally quadratically convergent in the
case that analytical Hessians are used. The proof of this follows from the proof of
Robinson [29] that Wilson’s algorithm is quadratically convergent combined with the
proof of Fletcher [13] that using first-order multiplier estimates does not inhibit
quadratic convergence. Superlinear convergence in the case of a particular quasi-
Newton approximation to W follows from Powell [27].

12. Computational results. We present the results from applying the algorithm
to 11 problems with the same {fi(x)} as the first four problems presented in [24]. The
solutions obtained are listed below, together with references where the definitions of
the {fi(x)} and the starting point used may be found.
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Problem 1. (Bard [3, p. 170].)

F1()=0.12434 with (0.10094, 1.52515, 1.97211).
Problem 2. (Kowalik and Osborne [20, p. 104, ex. (v)].)

F1()=0.0038768 with =(0.19337, 0.19377, 0.10893, 0.13973)7".
Problem 3. (Madsen [21, p. 326, ex. 2].)

FI() 1.00000 with (0.0000, 0.0002).
Problem 4. (El-Attar et al. [11, p. 81, ex. 2].)

FI(:) 7.8942 with (0.53597, 0.00000, 0.031918) 7".

The results are summarized in Table 1. The termination conditions were that
IIql= < 10-6, IIz   ll= < 10-6, zTwz numerically positive definite and I 1 <-- The
line search accuracy parameter r/ was set to 0.9 (see [23] for the definition of this
parameter). Several other choices of r/were tried, but r/= 0.9 was the most efficient,
indicating, as expected, that a slack line search is desirable, at least on these problems.
The machine used was an IBM 370/168 in double precision, i.e., with 16 decimal digits
of accuracy. The column headed NI reports the number of iterations required, which
is also the number of times the Hessian was approximated using finite differences. The
column headed NF gives the number of function evaluations (not including gradient
evaluations for the Hessian approximation).

TABLE

Problem NI NF

(Bard [3]) 3 15 0 20 20
2 (Kowalik and Osborne [20]) 4 11 0 11 14
3 (Madsen [21]) 2 3 0 15 15
4 (El-Attar et al. [11, # 2]) 3 6 2 10 11

These results demonstrate that our algorithm can be very efficient. Final quadratic
convergence was observed in all cases except Problem 3, for which Q is rank deficient.
The results must, however, be regarded as preliminary since further work needs to be
done regarding the active set strategy.

13. Concluding remarks. The motivation for requiring the search direction at
each iteration to be a first-order feasible descent direction for ELP and, if possible, to
be a solution of the quadratic program QP1, is quite similar to that presented in [24]
for the minimax problem. This is because both the minimax and l problems are
equivalent to differentiable constrained optimization problems with natural merit
functions available to measure progress towards a solution. However the details of the
algorithm presented here for the l problem are considerably different from the
algorithm of [24]. In particular, although ELP and QP1 involve m extra variables,
we have shown how to derive a method which solves successive quadratic programming
problems in only n variables. Other points which have been emphasized include the
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different roles o multiplier estimates and directions of search in the (n + rn)- and
n-dimensional spaces.

We could repeat many o the concluding remarks o [24] here. For example, we
observe that linear constraints can be incorporated directly into the algorithm but that
nonlinear constraints increase the complexity of problem liP to that of the general
nonlinear constrained optimization problem. In summary, the method of this paper has
been designed to take advantage of all the special properties of the 11 problem which
are not available for general constrained optimization problems.
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Abstract. In this paper we present algorithms and data structures that may be used in the efficient
implementation of symmetric Gaussian elimination for sparse systems of linear equations with positive
definite coefficient matrices. The techniques described here serve as the basis for the symmetric codes in the
Yale Sparse Matrix Package.
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1. Introduction. A central task in the numerical solution of important scientific
and engineering problems is quite often the solution of a system of linear equations

(1.1) Ax =b,

where A is an N xN sparse symmetric positive definite matrix. For instance, this is
frequently the situation when finite difference or finite element methods are used to
discretize linear partial differential equations arising from mathematical models in such
areas as structural analysis. As another example, the modeling of nonlinear phenomena
may lead to a large sparse system of nonlinear equations that can often be solved using
a variant of Newton’s method in which, at each step, a system of linear equations like
(1.1) must be solved.

In the past several years, much attention has been focused on the use of Gaussian
elimination for the solution of (1.1). With a variety of theoretical and practical tools,
great progress has been made towards the joint goals of numerical accuracy in the
solution and economy in terms of computing time and memory space. Several packages
of Fortran subprograms [5], [10], [12] for the solution of (1.1) have been developed
and widely distributed as a part of research in this area, and these have been gaining
increasing acceptance in the scientific community.

The intent of this paper is to present and analyze several algorithms that are used
in the Yale Sparse Matrix Package [5], one of the Fortran packages mentioned above.
Publications elsewhere [5]-[7], [16] describe the software package and its use and
discuss the rationale behind some of the design decisions. In this paper, however, we
provide a complete detailed analysis. The conclusions of the analysis are borne out
by a variety of experimental results reported, for example, in [4], [13], [17].

It is well known that the matrix A of (1.1) can always be factored in the form

(1.2) A= UrDU

where U is unit upper triangular and D is diagonal. Symmetric Gaussian elimination
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for (1.1) is equivalent to first factoring A in this way and then successively solving the
systems:

(1.3) Uy=b, Dz=y, Ux=z

to obtain x. For reasons of economy, we wish to factor A and compute x without storing
or operating on zeros in A and U. This requires a certain amount of storage and
operational overhead; that is, extra storage for pointers to the locations of the nonzeros
in addition to that needed for the numerical values of the matrix, and extra nonnumeric
"bookkeeping" operations in addition to the required arithmetic operations. Our goal
here is to describe a set of algorithms that can be implemented with little overhead.

We use a particularly robust algorithm designed by Chang [2] and previously used
by Gustavson [11]. The computation is broken up into three distinct steps: symbolic
factorization (SYMFAC), numeric factorization (NUMFAC), and forward- and back-
solution (SOLVE). The SYMFAC step computes the zero structure of U (i.e., the
positions of the nonzeros in U) from that of A, disregarding the actual numerical entries
of A. The NUMFAC step then uses the structural information generated by SYMFAC
to compute the numerical values of U and D. Finally, the SOLVE step uses the
information produced by both SYMFAC and NUMFAC to solve the resulting
triangular and diagonal systems for x.

The main advantage of splitting up the computation is flexibility. If several linear
systems have identical coefficient matrices but different right-hand sides, only one
SYMFAC and one NUMFAC step are needed; the different right-hand sides require
only separate SOLVE steps. Similarly, a sequence of linear systems whose coefficient
matrices have identical zero structures but different numerical entries can be solved by
using just one SYMFAC step combined with separate NUMFAC and SOLVE steps
for each system.

The algorithms for the SYMFAC, NUMFAC, and SOLVE steps are clearly
interdependent and, to some extent, depend also on the data structures used to store
A and U. Since experience shows that the NUMFAC step requires substantially more
computational effort than the other steps, the development in this paper is driven by
the requirements of the NUMFAC algorithm; that is, we first design an efficient
NUMFAC algorithm and then tailor the SYMFAC and SOLVE algorithms and data
structures accordingly. Thus, in 2, we construct efficient NUMFAC and SOLVE
algorithms; in 3, we describe data structures for efficiently storing A and U; and in
4, we develop an efficient SYMFAC algorithm.

As an aside, we note that this paper does not consider the possibility of reordering
the equations and unknowns of (1.1) in order to reduce the number of nonzeros in U
and the number of arithmetic operations required to factor A and solve for x. In
practice, it is quite important to do this (see, for example, [17]), but the effect on the
topics we discuss here is minimal, since for positive definite systems, the reordering
may be completed as a preprocessing step. In fact, the Yale Sparse Matrix Package
(and, for that matter, most software packages available for solving (1.1) with sparse
Gaussian elimination) accept as input a permutation corresponding to a reordering of
the equations and unknowns and provide at least one subprogram for computing a
good permutation.

2. Numerical factorization and solution. We begin by examining a factorization
algorithm for dense matrices. Such algorithms are well known (see Forsythe and Moler
[8]), and Algorithm 2.1 is a row-oriented version. In the algorithm the diagonal entries
dkk are stored in a vector D of length N in which D(k)= dkk. TO avoid notational
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confusion, we have presented the algorithm as if the matrix computations were
performed on an upper triangular matrix M, although in a standard implementation,
all the computations would be performed on the upper triangular portions of A and U.

ALGORITHM 2.1
1. Fork=ltoNdo
2. [D(k) akk;
3. For j k + 1 to N do
4. [m a];
5. For 1 to k- 1 do
6. It =mik;
7. mik mik/D(i);
8. D(k) D(k)- mik
9. For ] k + 1 to N do

10. [m m;-m. m]]];
At any time during the execution of Algorithm 2.1, part of M contains entries of

U, part contains entries ofDU (the matrix product of D and U), and part is unspecified.
Figure 2.1a shows the contents of M just prior to the start of the kth step of the
factorization. During the kth step, the algorithm computes dkk (line 8), the kth column
of U in the kth column of M (line 7), and the kth row of DU in the kth row of M
(lines 9-10). Figure 2.1b shows the contents ofM at the conclusion of the kth step. At
the end of the factorization, M contains exactly the entries of U.

k

DU

(a) Prior to kth factorization step

/ j=i <k
Unspecified mij uij <j < k

(DU)il <k" j >-_k

I, Unspecified k _-< _-<j

k

(b) After kth factorization step

j=i<_k

Unspecified m ui <j _-< k

I(OU)ij <- k j > k
I.Unspecified k < _--<j

FIG. 2.1.

When A is dense, Algorithm 2.1 can be implemented efficiently, since it stores
and operates on just the diagonal o D and the upper triangles of A and U. However,
when A is sparse, the algorithm fails to exploit the zeros in A and U to reduce the
storage and work. The bulk of this section is devoted to the development of an efficient
numerical factorization algorithm for this case.

Conceptually, at least, it is possible to avoid arithmetic operations on zeros by
explicitly testing the operands prior to using them; unfortunately, there are two serious
problems with this simple approach. First, all the entries in the upper triangles of A
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and M would have to be stored, since any of them could be tested or used as mkj in
line 10 of Algorithm 2.1. Second, there would be more test operations than arithmetic
operations, so that the running time of such an algorithm would be asymptotically
proportional to the amount of testing rather than to the amount of arithmetic op(A)l.

To overcome these difficulties, assume that at the beginning of the kth step of the
algorithm, we know"

(i) the set R of columns ] > k for which aki # 0;
(ii) the set R of columns/" > k for which Uki 0;
(iii) the set Ck of rows < k for which Uik 0;

u(iv) for each < k, the set R i,k of columns j > k for which uii O.
Then we can modify Algorithm 2.1 to obtain Algorithm 2.2 in which the only entries
of M used are those corresponding to nonzeros in A or U.

ALGORITHM 2.2
1. For k=l to N do
2. [D(k)=akk;
3. For/" R do
4. [rnki 0];
5. For / R do
6. [mk=aki];
7. For Ck do
8. It mik;

9. mik mik/D(i);
10. D(k) D(k)- mik
11 For ] eR tr

i,k do
12. [rnk mk]- mik mi]]]]’,

We now turn to the implementation of Algorithm 2.2. This requires that we deal
with the problem of "fillin", that is, with the creation of nonzeros in matrix positions
of U corresponding to zeros in A. A straightforward means of handling fillin involves
list-processing. At the kth step of the algorithm, all of the fillin occurs in the kth row,
so, by keeping that row as a linked list, it is possible to easily insert new nonzeros in
their proper places. After the kth step no additional fillin will occur in the kth row, so
it can be stored in a more efficient manner if desired. Unfortunately, the list-processing
approach is not particularly efficient in terms of computation time, since potentially it
requires a sweep through the entire linked list for each execution of the innermost loop,
even though IR ui,k might be quite small.2

To avoid list-processing, we use a technique known as "row expansion" that was
first suggested by Gustavson [11 ]. A modification of Algorithm 2.2 using row expansion
is given as Algorithm 2.3. During the kth step of Algorithm 2.3, row expansion consists
of three phases:

(i) The kth row of A is expanded into a vector V of length N so that V(]) akj

for ]RtU{k}. We assume that R c_R; that is, we do not allow for accidental
cancellation in which a nonzero in A becomes zero in U.

(ii) For each Ck, a multiple of row of U is subtracted from V. No special
attention need be given to fillin since, if the ]th column fills in, then V(]) was set to
zero in (i) before the row operations began.

We use op(A) to denote the number of multiplications and divisions required to factor the sparse
matrix A, including only operations involving two nonzero operands.

2 We use [S[ to denote the size of the set S.
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(iii) The kth row of DU is obtained by storing V(]) in (DU)ki for / R. Since
(DU)ki 0 if and only if ] k or Uki 0 (i.e., ] R ), this storage operation stores only
nonzeros. Moreover, since all fillin in the kth row occurs during the kth step of the
algorithm, this storage operation will implicitly take care of the insertion of fillin entries
in the kth row of U.

At this point we have an implementation that is quite time-efficient but apparently
requires a great deal of storage for auxiliary information about A and U. Certainly,
the sets R k

A and R must be stored because they describe the zero structures of A and
U, respectively. However, the sets Ck and R tr

i,k do not really contain new information
about U; instead, they simply present the same structure information in a somewhat

udifferent way. To save storage, we compute these sets from the sets R k.
uObserve that Ck and R i,k, 1 <--i _--< k, are required only during the kth step of

Algorithm 2.3. We can exploit this by a scheme in which the computation of these sets
need not be completed until the end of the (k- 1)st step. During previous steps we
allow these sets to be only partially computed.

ALGORITHM 2.3
1.. Fork=ltoNdo
2. [D(k)--akk;
3. For ] e R do
4. rv(/)=o];
5. For / R do
6. [ v(/) a];
7. For e Ck do
8. It mik’
9. mik mik/D(i);

10. D(k) D(k)- mik
u11. For ] e R i,k do

12. [V(j) V(/)--rrik"

The key to this scheme is to keep the sets R k
v ordered by increasing column

number. Then for < k, R i,k contains simply the segment of R beginning with the
first entry larger than k and including all succeeding entries. If each set R is stored
as a sequence of integers in consecutive locations in an array JU, then we can use a
vector IL of length N to obtain the sets R i,k as required. We just make certain that,

uat the beginning of the kth step, IL(i) points to the location of the first entry in R i,k.

At the conclusion of the kth step, we must update IL(i) for exactly those Ck {k},
u Usince R i,k R for all other i. For Ck we set IL(i) IL(i) + 1 while for k, wei,k +1

set IL(k) to point to the location of the first entry of R
To compute the sets Ck, we employ sets Pk that are constructed in such a way that,

during the kth step,
(i) Pk Ck, and
(ii) for ] > k, Pi contains those row indices < k such that e C but : Cm, k <- m < j.

During the kth step we use Pk in place of Ck, and, at the conclusion of the kth step, we
update the sets Pi, ] > k, so that conditions (i) and (ii) are satisfied during the (k + 1)st
step. This update is accomplished by moving the entries of Pk into the appropriate sets

uP], ] > k. For each Pk, if ] > k is the smallest entry of R i.+, then is placed into the
trset Pi. If R i,k+ is empty, is not placed into any set.

To store the sets Pk we use a special form of linked list in which the data and
pointers coincide. All of the information about these sets is stored in a single array JL
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of length N. At the kth step each entry JL(]), k <-] <= N, continues the row index that
is the first entry of Pj, if any, or zero otherwise. For each nonzero JL(i), JL(JL(i)) is
either the next row index in the same set as JL(i) or zero if there are no more entries
in that set. This scheme works because, at the kth step, the sets Pj, k <- ] <- N, are disjoint
and contain only row indices < k. As an illustration, Figure 2.2a shows a storage
configuration that might ensue during the factorization algorithm.

Ck={2,4,5} Ck+1={2,3} Ck+2={1,2,4}

R={2,’’ ",k-l,k+2,’"}

g={3,’’ .,k,k+l,k+2," "}

R3V {4, , k-l, k+l,’’ "}

g={5,’’., k, k+2,’’ "}

gsV={6, ’’’,k}

Pk {2, 4, 5}

(a) At step k" Pk+ {3}

Pk+2={1}

Pk=O
(b) At step k + 1" Pk+l {3, 2}

P/={,4}
FIG. 2.2

To actually update JL to reflect a move of row index from Pk to Pi, we save
temporarily the value of JL(i) (since it is the next row index in Pk), set JL(i)= JL(]),
and set JL(]) i. We then go on to the next entry of Pk. Figure 2.2b shows the storage
configuration that would result following the update of JL at the kth step, beginning
from the configuration shown in Figure 2.2a.

Algorithm 2.4 is a modification of Algorithm 2.3 that incorporates the refinements
introduced in this section. In addition, it uses the vector D for both D and V, based
on the observation that, at the kth step, the algorithm requires only the first k 1 entries
of D and the last N- k + 1 entries of V. From our previous discussion it is clear that
the algorithm is efficient in terms of storage, since only about 2N storage locations are
required in addition to the space for the numerical entries of A, D, and U and the
structure descriptions of A and U.

To determine the operational overhead of the algorithm, we examine separately
the times required for arithmetic operations and set-updating operations. There are
O(op(A)) arithmetic operations (since we avoid operations on zeros), and each one
requires constant time, due to the use of row expansion. Thus the NUMFAC algorithm
requires a total of O(op(A)) time for arithmetic operations. At the kth step, one
set-updating operation is required for each entry of Ck t3{k}, so that, overall,
O(nz(U) +N) updating operations3 are performed. Since each set-updating operation
costs only constant time, together they require a total of only O(nz(U)+N) time, and
the entire algorithm runs in O(op(A)) time since nz(U)+N -< op(A).

We conclude this section by presenting the SOLVE algorithm for the forward-
and back-solution of sparse symmetric systems. Algorithm 2.5 successively solves the

We use nz(M) to denote the number of nonzero entries of the array M that must be stored in any
sparse representation of M. For symmetric matrices, this includes only nonzero entries in the upper triangle.
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ALGORITHM 2.4
1. For k= l to N do
2. [Pk =0];
3. [’ork=ltoNdo
4. [D(k)=akk;
5. For j R do
6. [D(j) 0];
7. For j R do
8. [D(i)= ak];

For Pk do
10. [t mik;

11. mik mik/D(i);
12. O(k) O(k)- t mk
13. For j i,k do
14. [D(j) D(j)- m,k"

15 R ,: R,k -{k + 1};
16. If R u

i,k+l then do
17 i,k+l);
18. Pi PJ U {i}]1;
19. I| R # 0 then do
20. [j min (R );
21. P P U {k}]];

ALGORITHM 2.5
1. Fork=ltoNdo
2. [Yk bk];
3. [’ork=ltoN-ldo

4. [For j R do
5. [y y- uq. y,]];
6. Fork=ltoNflo
7. [Zk yk/D(k)];
8. For k N to l by -l do
9. [Xk Zk’

10. For j R flo
11. [Xk Xk Uki Xi]];

systems (1.3), and it fits in well with the NUMFAC algorithm because it uses only the
nonzero entries of A, D, and U and the structure information for A and U. It is quite
easy to see that the algorithm requires only O(nz(U)+N) time, since it operates
exactly once on each nonzero in U in solving each of the two triangular systems. The
cost of solving the diagonal system, of course, is only O(N).

3. Storage of sparse matrices. In the last section we developed an efficient
algorithm for the numerical UrDU factorization of A. That algorithm used as data
the nonzeros of A and U and the sets R and R, 1 <_-k <_-N, that describe the
structures of the rows of A and U, respectively. In this section we describe data
structures that can be used to efficiently store all of this information.

All of the storage schemes we consider are row-oriented; that is, information about
the matrix is organized row-by-row. This makes it easy to access information about the
rows but quite difficult to obtain information about the columns. In general, this might
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be a serious drawback in a storage scheme; however, as we have seen, information
about the columns is not required in this application.

The first storage scheme is the "uncompressed storage scheme" that is employed
in various forms by Gustavson [11], Curtis and Reid [3], Munksgaard [12], and others.
The nonzero matrix entries are stored by rows in order of increasing column index. To
identiy the entries of any row, it is necessary to know where the row begins, how many
entries it contains, and in what columns the entries lie. This extra information about
the structure of the matrix is the storage overhead mentioned in 1.

The uncompressed storage scheme for the matrix A uses three arrays (IA, JA, and
A) as illustrated in Fig. 3.1. The array A contains the nonzero entries of the upper

all a12 0 0 0 0

a21 a22 a23 a24 a25 0

0

a42 0 a44 0 46

a52 0 0 ass
0 0 a64 0 a66_]

2 4 6

A" a22 d23 a24 a25 46
k 1 2 3 4 5 6 7 8 9 10 11

Ja lil2 I"= 4 51 3[4[6 5 I. 6

Ia [. 3 7 8 110 !11 !2
FIG. 3.1

triangle stored row-by-row.4 The array JA contains the column indices that correspond
to the nonzeros in the array A: if A(k) contains a0", then JA(k)= f. Finally, the array
IA contains N + 1 pointers that delimit the rows of nonzeros in A and indices in JA;
i.e., A(IA(i)) is the first entry stored for the ith row, and A(IA(i + 1)- 1) is the last.
Thus the length of the ith row is given by IA(i + 1)-IA(i). Since R includes all but
the first of the column indices stored in JA for row i, we see that the uncompressed
storage scheme can be used quite naturally with Algorithms 2.4 and 2.5.

The storage overhead incurred when using the uncompressed storage scheme or
A is the storage for the arrays IA and JA. Since IA has N + 1 entries and JA has one
entry per nonzero in the upper triangle of A, the storage overhead is approximately
equal to nz (A).

It is possible to use the uncompressed storage scheme for U as well as A, as
illustrated in Fig. 3.2a. However, this ignores certain features of U that allow a
potentially significant reduction in the space required for column indices. Since storage
is often at a premium when solving sparse linear systems, we have chosen to use a more
complex "compressed storage scheme" that usually leads to a substantial reduction in
storage overhead at the cost of at most a small increase in operational overhead (see
[7]).

Figure 3.2a shows the data structures required to store a particular matrix U in
the uncompressed storage scheme. It is immediately evident that the diagonal entries

4 A is symmetric, so only the upper triangle is stored.
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1 ul= 0 0 0 0

0 1 u=3 u=4 U2s 0

0 0 1 u3, u3s 0

0 0 0 1 U,,s u,6

0 0 0 0 1 us6|

0 0 0 0 0

U:

k"

JU"

IU:

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

’ !1 4 4 ! 4 1 6 ;11 6

1 l 3 ..[ .7 [.i0 l ;3 15 tal
U:

k"

JU:

IU:

(b)

U12 23 24 25 U34 i//35 U5 Ui6 I,
1 2 3 4 5 6 7 8 9

2 -..! .3. 4’ 5 4 .l 5 5 6 1. 6-

’ I, = I , 7 ,,I, 9 0 ,,0

U:

k:

JU:

IU:

JU"

(c)

[,, U12 u’23 "24 i25 u4 u ]u, u [ u
1 2 3 4 5 6 7 8 9

12 13 4 i,1 ,
FIG. 3.2

need not be stored, since they are always equal to one and occur as the first stored
entry of each row. Figure 3.2b shows the data structures required when the diagonal
entries are omitted.

We now consider ways to "compress" JU. Assume that we are creating the data
structure for U by adding one row at a time, and consider the situation as we add row
k. Let row ] be the highest-numbered row whose indices are stored terminating in the
last position in JU used to store column indices for the first k- 1 rows. There are two
main cases in which compression can take place.

First, the indices for row k are the same as the last several indices for some
preceding row i. In this case we can use the indices stored for row to avoid storing
a separate set of indices for row k; all that is needed is a pointer to locate the start of
the indices for row k within those for row i. 5 In Figure 3.2b the indices for row 3 are
4, 5; while those for row 2 are 3, 4, 5. Instead of storing the indices for row 3 separately,
we simply use the last two indices already stored for row 2.

The number of indices for row k can be determined from IU.
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Second, the first several indices for row k are the same as the last several for row
[. In this case we can overlap the indices for rows [ and k. Again all that is needed is a
pointer to locate the beginning of the indices for row k. In Figure 3.2b the indices for
row 4 are 5, 6; while those for row 3 are 4, 5. Overlapping these two sets of indices
allows us to avoid duplicating the index 5 in JU.

In general, the compressed indices in JU do not correspond directly to the
nonzeros stored in the array U, so an extra array of pointers (HU) is required to locate
the start of the indices for each row (see Figure 3.2c). Thus the array U contains the
nonzero entries of the strict upper triangle of U stored row-by-row; the N + 1 entries
of IU delimit the rows in U as before; JU is the compressed array of column indices;
and the N entries of IJU point to the first column index in JU for each row. The
nonzeros of the ith row of the strict upper triangle of U are stored in U(IU(i)) through
U(IU(i + 1)-1), and the corresponding column indices are stored in JU(IJU(i))
through JU(IJU(i)+ IU(i + 1)- IU(i)- 1). Note that, since the entries of each row are
ordered by increasing column number, the column indices stored in JU for row form
precisely the set R required by Algorithms 2.4 and 2.5.

The storage overhead for the compressed storage of U is the number of locations
required for IU, JU, and IJU. Although, for small problems, this overhead can be
slightly larger than that for the uncompressed scheme, it is usually substantially smaller.
For certain systems arising in the solution of elliptic boundary value problems in a
square, for instance, the overhead is actually O(N) storage locations as opposed to the
O(N log N) nonzeros in U (see [16]).

4. Symbolic factorization. In 2 we presented NUMFAC and SOLVE algorithms
that required as input data the sets R and R r, 1 _-< k _-< N. As we saw in the last section,
the sets R are available directly from the uncompressed storage scheme used to store
A. In this section we develop a SYMFAC algorithm to efficiently compute the ordered
sets R . To simplify the presentation, we will assume that the R r are to be computed
as unordered sets; at the end of the section, we will discuss how to obtain ordered sets.

At the kth step we will compute R from R and the sets R, i<k. An
examination of Algorithm 2.3 shows that ui 0, > k, if and only if either

(i) aki # 0, or
(ii) uii # 0 for some Ck.

Thus R if and only if either
(i) or
(ii) R u

i, for some C.
This observation leads to Algorithm 4.1, which could be implemented efficiently by
replacing references to R u, and C as in Algorithm 2.4.

ALGORITHM 4.1
1. Fork=ltoNdo
2. [R=0];
3. Fork=ltoN-ldo
4. [For R do
5. [R R r O {]}];
6. For Ck do
7 [For ] R v

i,k do
8. [R ff R ff U {/}]]3;

However, we can do better. Consider the example in Figure 4.1 in which fillin
U uoccurs in u24 and U34. In computing R we use both R 1.3 and R 2.3, even though R 1.3tr

is redundant in the sense that R v v v v
x,3 R 1,2

_
R and hence R 1,3 R 2,3.
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all a12 a13 a041=/a21 a22 a23m
/an1 a32 a33

La41 0 0 a44_]

1 u23 u24U
0 1 usa
0 0

R 1,v3 {4} R v {3, 4}
u uR 1.2 {3, 4} R 2,3 {4}

FIG. 4.1

In fact, this observation can be generalized. Let Ik be the set of rows E Ck for
which k is the minimum column index in R. The following result expresses a type
of "transitivity condition" for the fillin in symmetric Gaussian elimination and implies
that, in forming R kv, it suffices to examine R u

i,k for lk. (Similar results have been
developed by others, e.g., [15].)

THEOREM 4.1 (Sherman [16]). Let Ck. Then either Ik or there is an m,
u u< m < k, such that m Ik and R i,k R m,ko

Using the theorem we see that R i and only if either
(i) ] E R, or

u(ii) ] R i,k for some lk.
Algorithm 4.2 is a symbolic factorization algorithm based on this observation. The sets
lk are formed by adding each row to the proper set l, as soon as R is computed.
In terms of implementation, the sets Ik are similar to the sets Pk introduced in 2. In
particular, only Ik and the partially computed sets l,, k < m _-< N, are required at the
kth step. Since these are disjoint sets containing only row indices less than k, we can
store them using a single array of length N, just as we did for the sets Pk.

ALGORITHM 4.2
1. Fork=ltoNdo
2. [R=O;
3. Ik =0];
4. Fork=ltoN-ldo
5. [For / R do
6.
7. For Ik do
8. [For ] E R u

i,k do
9. [If ] R then do

10. [Rr R k
u U {/}]]];

11. If R 0 then do
12. [i man (R);
13. l, l, U {k}]];

The cost of Algorithm 4.2 is determined by the costs of its innermost loop (lines
7-10) and of lines 5-6 and 11-13, since the remainder of the algorithm requires only
O(N) operations. At the kth step, for each Ik and j R u

i,k, lines 9-10 are executed
once. Since each row is a member of exactly one set lk, lines 9-10 are executed at
most once for each entry o the combined sets R, _-< _-< N (i.e., once for each nonzero
entry of U). If the characteristic vector of R k

v (cf., Aho, Hopcroft, and Ullman [1], p.
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49]) is computed along with R, then the test in line 9 requires constant time, since it
can be done by examining one entry of the characteristic vector. Furthermore, the
union operation in line 10 also requires only constant time since ] is simply appended
to the end of R, and the ]th entry of the characteristic vector is set to one. Hence a
total of O(nz(U)) time is spent in the innermost loop of the algorithm.

At the kth step, line 6 is executed once for each entry in R. Thus overall, it is
executed just once for each entry of the sets R, 1 _-< k _-< N, combined (i.e., at most
once for each nonzero entry of A). Again the union operation requires only constant
time, and, since nz(A)<-nz(U), the algorithm spends at most O(nz(U)) time in
lines 5-6.

Finally, note that, for each k, lines 11-13 require O(IR tl) time, since the minimum
operation of line 11 requires that much time, while the union operation of line 11
requires constant time. Thus overall, lines 11-13 and the entire algorithm both require
only O(nz(U)) time.

As discussed earlier, we need each set Rr in increasing order. One solution to
this difficulty is to modify Algorithm 4.2 to compute ordered sets directly by changing
the set union operations to list insertion operations so that each new entry is inserted
into its proper place. However, the time required for a list insertion operation depends
on the length of the list into which the insertion is made, and, except in special cases,
the modified algorithm may require more than O(nz(U)) time asymptotically. In
practice, the entire loop in lines 8-10 would be replaced with a list merging operation
to merge the ordered list R into R. However, the same conclusion would follow,
since the merging operation could require O(IR tl + IR 1)time.

An alternative to the use of list operations is to first compute the unordered sets
N

and then sort them. Viewing the set R [.J k=l R as a set of ordered pairs (k, ) for
R, we wish to sort R in lexicographic order; that is, so that (k, ) precedes (k’, f)

in R if and only if either
(i) k < k’ or
(ii) k k’ and/" </".

Since all the entries of the sets are integers between 1 and N, this sorting process can
be accomplished efficiently by using a bucket sort (cf. Aho, Hopcroft, and Ullman [1,
pp. 77-84]). This requires time proportional to the number of entries in the combined
sets, that is, O(nz(U)) time, and, combining the sort with Algorithm 4.2, we obtain an
algorithm for computing the ordered sets in O(nz(U)) time (cf., Rose and Whitten
[15], Rose, Tarjan, and Lueker [14], George and Liu [9], and Sherman [16]).

From this discussion it seems clear that asymptotically one should use the second
method for obtaining ordered sets. Surprisingly, however, experiments indicate that it
is usually faster to compute the ordered sets directly with list operations. This is
especially true for linear systems arising in the use of finite difference or finite element
methods for the solution of partial differential equations, since it can be proved that
computing the ordered sets directly requires only O(nz(U)) time for such systems. For
this reason, the software based on Algorithm 4.2 (see [5]) uses the list merging version
described above.

REFERENCES

[1] A. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] A. CHANG, Application of sparse matrix methods in electric power system analysis, in Sparse Matrix
Proceedings, R. A. Willoughby, ed., Rep. RA1, IBM Research, Yorktown Heights, NY, 1968,
pp. 113-122.



SPARSE SYMMETRIC GAUSSIAN ELIMINATION 237

[3] A. R. CURTIS AND J. K. REID, Fortran subroutines tor the solution of sparse sets ol linear equations,
AERE rep. R.6844, HMSO, London, 1971.

[4] S. C. EISENSTAT, J. A. GEORGE, R. GRIMES, O. R. KINCAID AND A. n. SHERMAN, Some
comparisons ofsoftware packages for large sparse linear systems, in Advances in Computer Methods
]’or Partial Differential Equations--III, R. Vichnevetsky and R. S. Stepleman, eds., IMACS, New
Brunswick, NJ, 1979, pp. 98-106.

[5] S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ AND A. H. SHERMAN, The Yale sparse matrix
package I: Symmetric matrices, Rep. 112, Dept. of Computer Science, Yale University, New
Haven, CT, 1977.

[6] S. C. EISENSTAT, M. H. SCHULTZ AND A. H. SHERMAN, Application of sparse matrix methods to
partial differential equations, in Advances in Computer Methods ]:or Partial Differential Equations--
/, R. Vichnevetsky, ed., AICA, New Brunswick, NJ, 1975, pp. 40-45.

[7] S. C. EISENSTAT, M. H. SCHULTZ AND A. H. SHERMAN, Considerations in the design ofsoftware for
sparse Gaussian elimination, in Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds.,
Academic Press, New York, 1976, pp. 263-274.

[8] G. E. FORSYTHE AND C. B. MOLER, Computer Solution ofLinear Algebraic Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1967.

[9] J. A. GEORGE AND J. W.-H. LIu, An optimal algorithm for symbolic [actorization ol symmetric
matrices, Res. rep. CS-78-11, Department of Computer Science, University of Waterloo, Ontario,
1978.

[10] J. A. GEORGE AND J. W.-H. LIU, User guide lor SPARSPAK Waterloo sparse linear equations
package, Res. rep. CS-78-30, Dept. of Computer Science, University of Waterloo, Ontario, 1978.

[11] F. G. GUSTAVSON, Some basic techniques ]’or solving sparse systems o] linear equations, in Sparse
Matrices and Their Applications, D. J. Rose and R. A. Willoughby, eds., Plenum Press, New York,
1972, pp. 41-52.

[12] N. MUNSGAARD, New factorization codes ]’or sparse, symmetric and positive definite matrices, BIT 19
(1979), pp. 43-52.

13] D.J. ROSE, A. H. SHERMAN, R. E. TARJAN AND G. F. WHITTEN, Algorithms and software ]’or in-core
lactorization o]’ sparse symmetric positive definite matrices. Comput. & Structures 11 (1980),
pp. 597-608.

[14] D. J. ROSE, R. E. TARJAN AND G. S. LUEKER, Algorithmic aspects of vertex elimination tn graphs,
SIAM J. Comput. 5 (1976), pp. 266-283.

[15] D. J. ROSE AND G. F. WHITTEN, private communication.
[16] A. H. SHERMAN, On the efficient solution of sparse systems of linear and nonlinear equations, doctoral

dissertation, Department of Computer Science, Yale University, New Haven, CT, 1975.
[17] P. T. Woo, S. C. EmENSTAT, M. H. SCHULTZ AND A. H. SHERMAN, Application of sparse matrix

techniques to reservoir simulation, in Sparse Matrix Computations, J. R. Bunch and D. J. Rose, eds.,
Academic Press, New York, 1976, pp. 427-438.



SIAM J. ScI. STAT. COMPUT.
Vol. 2, No. 2, June 1981

1981 Society for Industrial and Applied Mathematics
0196-5204/81/0202-0011 $01.00/0

ON CERTAIN PARALLEL TOEPLITZ LINEAR SYSTEM SOLVERS*

J. GRCAR’ AND A. SAMEH"

Abstract. In this paper we describe three algorithms for solving positive-definite banded Toeplitz
systems of linear equations on parallel computers. Assuming we have 4rnn processors, where n is the order of
the system and m is the number of super- or subdiagonals, each system may be solved in O(m log n) time
steps. Numerical experiments that compare the behavior of these algorithms in solving pentadiagonal
Toeplitz systems are presented.

Key words, circulant matrix, Hurwitz factorization, parallel computers, Toeplitz matrix

1. Introduction. Many problems in mathematical physics and statistics give rise to
Toeplitz or block-Toeplitz (or the related Hankel or block-Hankel) systems of linear
equations. Some examples are" problems involving convolutions, integral equations
with difference kernels, least squares approximations by polynomials, and stationary
time series. Several sequential algorithms have been developed for the inversion of
Toeplitz and Hankel matrices of order n, all requiring O(n 2) arithmetic operations. See,
for example, [Tren64], [Tren65], [Bare69], [Zoha69], [Phil69], [Just74], and [Riss74].
The extension of the above work to block-Toeplitz and block-Hankel matrices of order
np with blocks of order p shows that the inverse can be obtained in O(p3n2) operations;
see [Wats73] and [Riss73]. An excellent survey on inverses of Toeplitz operators is
given in [KaVM78]. Recently, some new algorithms have been developed that compute
the inverse of a dense Toeplitz matrix even faster, O(n log2 n) operations. See
[GuYu79], [BrGY80] and [Morf80]. These algorithms, and one of ours, use a doubling
or divide-and-conquer strategy, a strategy that is exploited in many parallel algorithms
[Hell78]. Our main interest here, however, is the solution of banded Toeplitz linear
systems of equations of bandwidth (m + 1), where the order n is much larger than m.
These systems arise in the numerical solution of certain initial and/or boundary-value
problem using finite difference approximation. The fastest sequential algorithm
[MoKa77] requires O(n log m) arithmetic operations for solving one such system of
linear equations. For large n, this is rather expensive, especially when one has to solve
these Toeplitz systems repeatedly as in time-dependent problems. In this paper we
present three algorithms for solving banded Toeplitz systems on parallel computers
which require far less time than the classical sequential algorithms. Essentially, we show
that a positive-definite banded Toeplitz system may be solved in O(m log n) time steps,
provided we have 4mn processors. This time accounts only for the arithmetic opera-
tions, where we have assumed that each of the four arithmetic operations consumes one
time step. In view of the recent availability of very large-scale integrated circuits,
"computer on a chip" microprocessors, and large semiconductor memory chips,
parallel computers with a large number of processors may become feasible in the
not-too-distant future. The parallel algorithms presented below, however, may be
modified for a parallel computer with fewer processors. In our discussion of these
algorithms in 3, we ignore the time consumed in data handling. Assuming, however,
that the parallel computer under consideration possesses an alignment network which
connects the processors and the memory in such a way as to maximize conflict-free
access of data to the various processors, we claim that the time required by the
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arithmetic operation is the dominant portion of the whole time necessary for the
completion of each of the three algorithms. Such a claim is not unreasonable in view of
the fact that each banded Toeplitz matrix can be described by at most (2m + 1) numbers.

Throughout the paper we adopt the notational conventions of Householder
[Hous64]. So, except for dimensions and indices, lowercase Greek letters represent
scalars, lowercase Latin letters represent column vectors, and uppercase Greek or Latin
letters represent matrices.

2. Preliminaries. The algorithms presented in the following section rely on
several facts concerning Toeplitz matrices and the closely related circulant matrices. In
this section, we review some of the main results concerning such matrices. We also
present some of the basic parallel algorithms that are used in 3.

DEFINITION 1. Let A [a0] R",n. Then A is Toeplitz if a0 ai-i, i, j
1, 2,.. , n. In other words, the entries of A along each diagonal are the same.

DEFINITION 2 [Zoha69]. Let A, E’, R’,n, where E, [e’,, e,-1, , eli, in
which ei is the ith column of the identity matrix I’,. A is then said to be persymmetric if
E’,AE’, Ar; in other words, if A is symmetric about the cross-diagonal.

DEFINITION 3 [Aitk39]. Let A g2,2n. Hence, A is called centrosymmetric if it
can be written as

A cT EnBE,,

where B, C ’,’,, B B r, and Cr EnCE’,. Equivalently, E2",AE2", A.
LEMMA 1 [Zoha69]. LetA ’, be a nonsingular Toeplitz matrix. Then, both A

and A- are persymmetric i.e., E’,AEn A r, and E’,A-1En A-r.
LEMMA 2 [CaBu76]. Let A 22", be a symmetric Toeplitz matrix of the form

A= CT

Thus, A is also centrosymmetric. Furthermore, if

we have

P2",APf’, [B + CE’,
0

The proof is a direct consequence of Definition 3 and Lemma 1.
THEOREM 1 [GoFe74], [KaVM78]. LetA ’,’, be a Toeplitz matrix with all its

leadingprincipal submatrices being nonsingular. Let also, Au ae andAv Be’,, where

Since A- is persymmetric, then a 3, and A-1 can be written as

(2.1) aA UV QO
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in whichthe right-hand side consists of the triangular Toeplitz matrices

jt/’n --2

Pn,--

/72

/71 /72 /Tn--1 0

/Tn -2 /’In -1

/Tn --2

/71

This interesting formula was first given by Gohberg and Semencul [GoSe72]. It
shows that A-1 is completely determined by its first and last columns. Using (2.1), one
may compute any selected element of A-1. Cancellation, however, is assured if one
attempts to compute an element of A-1 below the cross-diagonal. Since A-1 is
persymmetric, this situation is remedied by computing the corresponding element
about the cross-diagonal. Moreover, if A is symmetric, its inverse is both symmetric and
persymmetric, and u E,v completely determines A-1 via

(2.2) oeA-l= UUT

Finally, if A is a lower triangular Toeplitz matrix, then A =cz U.
DEFINITION 4. LetA e R"" be a banded symmetric Toeplitz matrix with elements

czii 1i-1 tZk, k 0, 1, m, where m < n, a, # 0 and ak 0 for k > m. Then the
complex rational polynomial

(2.3) & (:)= am:-" + +" 01:-1+ 00 + 01 +
is called the symbol ofA [GoLe78].

LEMMA 3 [Part 62]. Let A be as in Definition 4. Then A is positive definite for all
n > m if and only if:

(i) (e’) ao + 2 ,k= ak COS kO >- 0 ]’or all O, and
(ii) (ei) is not identically zero.
Note that condition (ii) is readily satisfied since a, # 0.
THEOREM 2 [FGHL74]. Let A in Definition 4 be positive semi-definite ]’or all

n > m. Then the symbol () can be factored as

(2.4)

where

(2.5)

() 4()0(1/s

is a real polynomial with ft,, # 0, fl0 > 0, and with no roots strictly inside the unit circle.
This is a theorem due to Fejer and Riesz [RiNa55], see also [Szeg59] and [GrSz58].

The factor 4’(:) is called the Hurwitz factor. Such a factorization arises mainly in the
time series analysis and the realization of dynamic systems, see [Robi67], [Wils69],
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[RiKa72], and [Loew77]. The relevance of the Hurwitz factor to the problem at hand
will be apparent from the following theorem.

THEOREM 3 [GoLe78], [Baue55], and [Baue56]. Let b(ei)>0, that is, A is
positive definite and the symbol (2.3) has no roots on the unit circle. Consider the Cholesky
factorization

(2.6) A =LLr

where,

(2.7) L
/(0re+l)

Aim+2) (m+2)X0

(k) (k)"A m-1. A k).

Then,

(k)lim A =r, 0<=/"----m,
koo

where fir is given by (2.5). In fact, ifz is that root of() closest to the unit circle (note that
Il > 1) with multiplicity p, we have

(2.8) h k) fir + O[(k -i)2(-l)/l-Iz(-i)].

This theorem shows that convergence of the rows of the Cholesky factor L is linear
with the asymptotic convergence factor depending on the magnitude of that root of 4(s)
closest to the unit circle. The larger this magnitude, the faster is the convergence.

We turn now to circulant matrices that play an important role in one of the
algorithms in 3. In particular, we consider these circulants associated with banded
symmetric or nonsymmetric Toeplitz matrices.

Let A [a_,,, , a-x, ao, ax, am] E Rnn be a banded Toeplitz matrix of
bandwidth (m + 1) where 2m + 1 _-< n, and a,,, a_,, 0. We write this matrix as

(2.9) A

B C
D B

D
C
B C

C
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where B, C and D e R"" are the Toeplitz matrices

and D=

--m+l

0

The circulant matrix A corresponding to A is therefore given by

(2.10)

B C D
B C 0

o 6s

which may also be written as the matrix polynomial

where

(2.11) K

/i E
i=0

0 1
0 1

1
1 0

It is of interest to note that KT=K-x= K"-x and K" I..
LEMMA 4 [Davi79]. Let Wbe the unitary Fourier matrix o[ order n,

(2.12)

1 1 12 1

1
w w w

t0 09
2(n-1W n

in which to e i(2r/") is an nth root of unity. Then,

(2.13)
W*KW fl

diag (1, o, 0,t
2

" (.0 -1)
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and

(2.14)
W*W F

E + E --i=o

where
In other words, the kth eigenvalue of A, k 0, 1, ., n 1, is given by

(2.5) w =(o)
where

is the symbol of the nonsymmetric Toeplitz matrix (2.9), or

(2.16) W, =4-A e[+ Wa,
in which a

Most of the fundamental parallel algorithms needed in 3 may be found in the
survey by Heller [Hell78], or in [Same77]. For the sake of self-containment, we present
a brief summary of such results.

LEMMA 5. Let x, y ’, then the inner product xy can be evaluated in 1 + log n
time steps using n processors.

LEMMA 6. Let L be lower triangular. The linear system Lx f can therefore
be solved in time 3(n 1) using only (n 1) processors, or in 3 + 1/2(log n)(3 + log n) time
steps provided that O(n 3) processors are available.

LEMMA 7. If L is Toeplitz lower triangular, then Lx f can be solved in log2n +
O(log n) using only n2/4 processors.

LEMMA 8. Let L be lower triangular, Toeplitz, and banded with bandwidth
m + 1, i.e., hk 0 [or k li -]l > m. Then Lx f and Ly ex may be solved in time less
than (3 + 2 log m) log n using [3/4 toni processors.

THEOREM 4. Let A be nonsingular. Using Gaussian elimination without
pivoting, the triangular factorization A LUmay be obtained in time 3(n 1) using no
more than n2processors. Ifpartialpivoting is used, however, thefactorization requires time
O(n log n) using the same number o]’ processors.

THEOREM 5 [Peas68]. Let W C"x" be as in Lemma 4, y C", and n is a power of
2. Then the product Wy may be obtained in 3 log n time steps using only 2n processors.

3. Computational Schemes. In this section we present three algorithms for solving
the Toeplitz linear system

(3.1) Ax =f
where A is given by (2.9) and n >> m. All three algorithms are suitable for parallel
computation. We state clearly the conditions under which each algorithm is applicable,
and give upper bounds on the time and number of processors required by each
algorithm.

The first algorithm requires the least time of all three, 6 log n +O(1). It is
applicable only when the corresponding circulant matrix is nonsingular. The second
algorithm may be used if A, in (3.1), is positive definite or if all its principal minors are
nonzero. It solves (3.1) in O(m log n) time steps. The third algorithm uses a
modification of the second algorithm to compute the Hurwitz factorization of the
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symbol (:) of a positive definite Toeplitz matrix. The Hurwitz factor, in turn, is then
used by an algorithm proposed by Fischer, et al. [FGHL74] to solve (3.1). This last
algorithm is applicable only if none of the roots of (:) lie on the unit circle. In fact, the
root of the factor 4(:) nearest to the unit circle should be far enough away to assure
early convergence of the modified Algorithm 2. The third algorithm requires time
O(log rn log n) provided that the Hurwitz factor has already been computed. It also
requires the least storage of all three algorithms.

A fourth algorithm that could be included here is the specialization of the block
cyclic reduction methods developed by Swarztrauber [Swar74] and Heller [Hell76].
Swarztrauber stabilizes the reduction by the Buneman method [Bune69], while Heller
identifies classes of matrices for which the reduction is naturally stable; among these are
diagonally dominant matrices. The numerical experiments of 4 include comparisons
with Heller’s algorithm.

ALGORITHM 1. Let A be that banded nonsymmetric Toeplitz matrix given by
(2.9). We can write the linear system (3.1) as

(3.2) (A -S)x =
where A is the circulant matrix (2.10) associated with A, and

in which

S=U
C

0 0 L"
If/i is nonsingular, the Woodbury formula [Hous64] yields the solution

(3.3)

where

x =A-’[-A-1UG-*U’A-lf,

G UT-1 U-
C

Now, the computation of x can be performed in four stages.
Stage 1. In this stage we determine whether A is nonsingular and, if so, we

determine/i-1 and y -f. Since the inverse of a circulant matrix is also a circulant,- is completely determined by solving v ex. This will be done via (2.14), i.e.,
y WF- W*f and vx WF-1W*e. Such a computation is organized as follows:

(i) Simultaneously form x/-Wa (see (2.16)), and W*f in 3 log n time steps using
4n processors, see Theorem 5 (FFT). This is an inexpensive test for the nonsingularity
of. If none of the elements of x/-Wa (eigenvalues of) vanish, we proceed to step (ii).

(ii) Using 2n processors, obtain F-(W*e) and F-(W*f) in one time step.
Note that /-W*ex (1, 1,..., 1) T.

(iii) v W(F-XW*ex) and y= W(F-1W*f) are then computed via the FFT
(Theorem 5) in 3 log n time steps using 4n processors.

Therefore, this stage requires time (1 +6 log n) employing no more than 4n
processors.

Stage 2. Here we wish to solve the linear system

(3.4) Gz UTy
Y
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where yl, y R" contain the first and last m elements of y, respectively. First, we have
to form the matrix G R2,2,. From Stage 1, vl completely determines -1, in
particular we have

where F, M, and N are Toeplitz matrices each of order m. Now, G is given by

G=
N_D_

Recalling that C-1 andD-1 are completely determined by their first columns C-e and
D-el, the two inverses are simultaneously determined in time O(log2 m) with m2/2
processors, see Lemma 7. After one subtraction, (3.4) is solved in O(m log m) time
steps employing 4m2 processors, see Theorem 4 and Lemma 6.

Stage 3. The n-vector u ,-Uz is trivially obtained in O(rn) time steps using 2n
processors.

Stage 4. Finally, using n processors, the solution of (3.1) may be obtained in one
time step, x y- u.

The time required by this algorithm, which is clearly dominated by the first stage, is
6 log n +O(m log m) employing no more than 4n processors. The corresponding
sequential algorithm consumes O(n log n) time steps, hence we obtain O(n) speedup,
indicating very effective usage of our 4n processors. It may also be of interest to point
out that at no time do we need more than 2n + O(m2) storage locations.

The notion of inverting a Toeplitz matrix via the correction of the corresponding
circulant-inverse is certainly not new. It has been used, for example, in some of the
sequential algorithms in [FGHL74] and [MoKa77].

Such an algorithm, when applicable, is very attractive on a parallel computer with
the appropriate switching network needed for the fast Fourier transforms. Given 4n
processors, the time required for solving (3.1) is so inexpensive that one is tempted to
improve the solution via one step of iterative refinement. Since v is already available,
each step of iterative refinement requires only 2n processors. The desirability of
iterative refinement for this algorithm is discussed in more detail in 4.

ALGORITHM 2. Here, we assume that the banded Toeplitz matrix A in (2.9) is
positive definite. This implies that D Cr, and B is positive definite. For the sake of
ease of illustration, we assume that n 2qp, where p and q are integers with p
O(log n)>_-m. On a sequential machine, the Cholesky factorization is the preferred
algorithm for solving the linear system (3.1). Unless the corresponding circulant matrix
is also positive definite, however, the rows of L (the Cholesky factor of A) will not
converge, see Theorem 3. This means that one would have to store O(mn) elements,
which may not be acceptable for relatively large m. Even if the corresponding circulant
matrix is positive definite, Theorem 3 indicates that convergence can indeed be slow if
the magnitude of that root of the Hurwitz factor (:) (see Theorem 2) nearest to the
unit circle is only slightly greater than 1. Implementing the Cholesky factorization on a
parallel computer requires O(s) time steps using O(m2) processors, where s is that row
of L at which convergence takes place. If s n, Cholesky factorization is definitely not
suitable for a parallel computer, with ample number of processors, with regard to time
or storage. In the following, we present an alternative parallel algorithm that solves the
same positive definite system in time O(m log n) with O(n) processors, which requires
no more than 2n +O(m2) temporary storage locations. This algorithm is also an
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alternative to Algorithm 1 if the circulant matrix associated with A is only positive
semidefinite, in which case Algorithm 1 fails.

Recalling our assumption that n 2qp, the algorithm consists of (q + 1) stages
which we outline as follows.

Stage O. Let the pth leading principal submatrix o A be denoted by Ao, and the
right-hand side of (3.1) be partitioned as

where fl) and nip 2L In this initial stage we simultaneously solve the ( + 1)
linear systems

(3.5a) Aozo e,
(3.5b) aoyl) fo), 1, 2, ,
where eP Rp is the first column of the identity I. From Theorem 4 and Lemma 6 we
see that the above systems can be solved in 9(p- 1) time steps using mr/processors.

Stage . (j 1, 2,..., q). Let

(3.6) Ai CT
C

be the leading 2r x2r principal submatrix of A, where r= 2J-lp. Also, let f be
partitioned as

fT (f1)T, f(z1)T, f’)T)
where f) e R2, and , n/2r. Here, we simultaneously solve the (, + 1) linear systems

(3.7a) Aizi e(2r),
(3.7b) Aiy) =fi), i=1,2,...,,

where stage (j- 1) has already provided us with zi-1 Aer) and
1, 2, , 2. Let us consider the time and number of processors required for solving

the ith linear system in (3.7b). Observing that

and premultiplying both sides of (3.7b) by the positive definite matrix

Di diag (A,A)
we obtain the linear system

Y2i--1 /(3.8)
L

where

0
Gj A_I[C] and /-/-=A-_I[CoTI.

From Lemma 1 we see that both A-_ and C are persymmetric, i.e. E4-_tEr A-j-1and EmCEm C, thus/-/. ErGE. Using the Gohberg-Semencul formula (2.2), see
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Theorem 1, H may be expressed as follows. Let

U OlZi-1

(1, /1, [2, [./,r-- 1)T
and

lTl JrEru,

where L [e(2’), e (’),,0]. Hence, H is given by

aH (YY- ’()C,(3.9)

in which,

and

Y=[u, JrU, ",

? [a, y,a, , ]7-
Y1 (I.,, O) Y

1

/xl 1 0

/tL2 /’/’1 1..

?x (t,, o) ?

0

/z,_ 0 0

itr.--2 [r--1 0

L/X,-m+l /r-2

The matrix of coefficients in (3.8), D-XAs, may be written as

N

N(s) is clearly nonsingular since A is invertible. Note also that the eigenvalues of the
X2mcenter block N2n 2m are those eigenvalues of (D]- Ai) that are different from 1.

/2 /2 ()Since D;XAi is similar to the psoitive definite matrix D; AiD; N2" is not only
nonsingular but also has all its eigenvalues positive. Hence, the solution of (3.8) is
trivially obtained if we first solve the middle 2m equations,

(3.10a) N(2S)h g,

or

(3.10b) [I
where

"’M""’ls.,J[ h,.,] =[h2iJ g2,i

--1( CTMs (Ira, O)/-/s a yx yr I7.1
and gk.i, hk.i, k 1, 2, are the corresponding partitions of fs) and y (s), respectively.
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Observing that N2j) is centrosymmetric (see Definition 3), then from Lemma 2 we
reduce (3.10b) to the two independent linear systems

(3.10c)
(I + EmMi)(h,i +Eh2,) (gl, + Eg2,),
(I,. E,.M)(h., E,.h2.,) (g., E.,g2.,).

p N(i)pTSince ,, , has all its leading principal minors positive, these two systems may be
simultaneously solved using Gaussian elimination without partial pivoting. Once h and
Emhg. are obtained, y) is readily available.

(]) [ Y (2)-- ErHEmh2,i](3.11) y .(-) r_r . I"
Y 2i jtl,i -The computations to be performed in this stage may be organized as follows:

(a) Since u and t are readily available from stage ]- 1, M. may be computed in
time 4+ 2 log m (see Lemma 5), using no more than m 3 processors (see
Fig. l(a)).

CT

Level 1 2 3 4
Time + log m 1 + log m 1
Processors < m2 < m < m m2

FIG. l(a)

(I,-m, 0)Y W h,,, or/2., (I,_,,, 0) I7" if’ h ,,, or/2,i

Level 1 2 3
Time + log m 1 + log m 1
Processors m m + 2m m m

FIG. l(b)
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(b) The two linear systems (3.10c) may be solved for hl,i and h2,i E,,,hz. in time
3m +1/2 log2m + O(log m) using less than m 3 processors (see Theorem 4 and
Lemma 6).

(c) From (3.9), one can sim.ultaneously obtain the top (r- rn) elements of the two
r-vectors/-/ih 1..i and Hih2,i in time 3 + 2 log m using 4m(r- m) processors (see
Fig. l(b)).

(d) Finally, the rest of the elements of yl i) are obtained via (3.11) in one time step
using 2(r-m) processors.

Thus, using no more than 4mr processors, one system in (3.7b) may be solved in
3m + 1/2 log2 m + O(log m) time steps. Since we have (u + 1) such systems in (3.7a) and
(3.7b), the ]th stage requires the same time above, provided we have 4re(r-m)
(v+ 1)<2ran +4mr processors. Consequently, the whole algorithm consumes time
3m log n +O(log2 m log n) employing no more than 4ran processors. In fact, the
number of processors may be reduced to O(n) with the time remaining O(m log n)o
This can be attained if we assign only one processor to each inner product at level 2 of
Figure l(b) rather than m processors. In this case d and d, 1, 2, are computed in
(2m- 1) time steps employing 4(r- m) processors. Hence, using only 4n processors,
the above algorithm requires time 5m log n + O(log2 m log n). The storage required in
both versions of Algorithm 2 is only 2n + O(m2). Faced with another right-hand side in
(3.1), we can reduce the number of processors required by Algorithm 2 by one-half,
provided that we store the vectors zi, ] 1, 2, .., q- 1 (see (3.5a) and (3.7a)). This,
however, will increase the required storage to 3n / O(m2).

We would like to point out that Algorithm 2 is not restricted to positive definite
systems. It may be used to solve any nonsymmetric matrix whose leading principal
submatrices of order 2kp, k O, 1, , q, are nonsingular. In such a case, however, we
need not only compute the first column of the inverse of eachAi, but also the last column
of the inverse. This will allow us to make use of the Gohberg-Semencul formula to
conveniently express the matrices Gi and/-/. The time and the number of processors
required by the algorithm will remain O(m log n) and O(n), respectively.

Such nonsymmetric Toeplitz systems arise, for example, from the finite difference
approximation of the Korteweg-de Vries equation

ut + uu,, + 62u,,,,, 0

using the scheme proposed by Kreiss and Widlund [KrWi67], see also [Buck74] and
[Buck77]. In this case, one has to solve nonsymmetric Toeplitz systems at each time
step, At, where the banded matrix of coefficients is given by

A =I+S

in which tn 2 and S is skew symmetric. Since all the eigenvalues of S are pure
imaginary, all the leading principal submatrices of A are nonsingular and we can use
Algorithm 2. Since rn is small, we can further reduce the time required for the repeated
solution of such systems by forming and storing the matrices/-/i, ] 1, 2,..., q- 1.
Note that Gi -ErItE,. It is not difficult to show that, by computing the matrices/-/i
explicitly, the time required to solve the linear system for the first time is 14 log n
provided we use 6n processors. Now, allocating 4n / O(log n) storage locations for the
matrices Hi, the first and last columns of A-1, and the LU-factorization of M,
] 1, 2,.. , q 1, each subsequent linear system is solved in time 6 log n using only 2n
processors. Algorithm 1, which may also be used in solving these systems, requires
essentially the same time, but double the number of processors.
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ALGORITHM 3. Here, we present an algorithm that is applicable only to those
banded Toeplitz positive definite matrices that have positive definite associated circu-
lant matrices. In other words, we assume that both A in (2.9) and A in (2.10) are
positive definite. Hence, from Lemma 4 and Theorem 3, row ’ of the Cholesky factor of
A will converge to the coefficients of (:), where t<n. Consider the Cholesky
factorization (2.6), A LLr, where

Sx
V1 S2

V2 S

(3.12) L
Si

S
V S

in which f mi + 1, Sj and V. R"’ are lower and upper triangular, respectively, and
S, V are Toeplitz and given by

0
fl, 0

fro-1 31 30
and

Equating both sides of (2.6), we get

B SST + VVr,
and

c=sv
where A, B, and C are as given in (2.9). Now, A can be expressed as

(3.13) A R TR + (Io"*) vvT(I,., O)

where R T e[ is the Toeplitz lower triangular matrix

(3.14) R T

V S_
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Assuming that an approximate Hurwitz factor, (:) Yi=0 Bi:j, is obtained from a
floating-point Cholesky factorization of A, i.e.,

$

V $

is available, Fischer et al. [FGHL74] have proposed to compute the solution of the
linear system (3.1) via the Woodbury formula [Hous64] as

(3.15) x =F-lf-F-I[Q. 1Q-I[, 0IF-if
[_ IJ _1

where

and

Computing x in (3.15) may then be organized as follows"
(a) Solve the linear system Fv f via the forward and backward sweeps/ 7"w f

and/v w. Note that in Lemma 8 we obtain also/-e which completely determines

(b) Let =/-a(,) and v (I,,, 0)v, and simultaneously form T 1 I7" and
u IT"rye. Now (2 I,,, + TrT is easily computed.

(c) Solve the linear system Oa u, see Theorem 4 and Lemma 6, and obtain the
column vector b Ta.

(d) Finally, solve the Toeplitz triangular system Rc b, and obtain the solution
X I)--C.

From the relevant basic lemmas and theorems outlined in 2 we see that, given the
approximation to the Hurwitz factor R, (3.15) requires a time of (10+6 log m) log n +
O(m) steps using no more than mn processors, and only n + O(mE) storage locations,
the lowest among all three algorithms.

Since the best known time for obtaining and "0" via the Cholesky factorization of
A on a parallel computer with no less than mE processors is O(’), the cost of computing
the Hurwitz factorization can indeed be very high unless ’ << n. This will happen only if
the Hurwitz factor ff(:) has its nearest root to the unit circle of magnitude well above 1.

In what follows, we present an attractive alternative to the Cholesky factorization.
A simple modification of Algorithm 2 yields a very efficient method for computing the
Hurwitz factor. Let 2kp >-- m(i + 1) ’ + m 1. Then, from (2.6), (3.8)-(3.12) we see
that

(3.16) EMkEm S-rS-C.

In other words, the matrices M. in (3.10b) converge to a matrix M (say), and the
elements fl., 0 -<_ j <_- m 1, of are obtained by computing the Cholesky factorization of
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Now, the only remaining element of I7, namely/,,, is easily obtained as a,,//o, which
can be verified from the relation C SVT.

Observing that we need only to compute the matrices M., Algorithm 2 may be
modified so that in any stage/’, we solve only the linear systems Ajz e2r, where
] 0, 1, 2, ., and 2r 2J/lp. Since we assume that convergence takes place in the kth
stage, where = 2kp <--n/2, the time required for computing the Hurwitz factor is
approximately 6ink <- 6m log (n/2p) using 2m7 <_- mn processors.

4. Numerical experiments. The above parallel algorithms have been tested using
positive definite Toeplitz systems of linear equations with bandwidths of 3, that is, with
m 2. Lemma 3 states that all sufficiently large Toeplitz matrices having diagonal
values (1, tr, 8, tr, 1) are positive definite provided that the symbol function 4(e i)
8 + 2tr cos 0 + 2 cos 20 has no negative values. For positive 8, this condition is satisfied
when (tr, 8) corresponds to a point on or above the lower curve in Figure 2. The matrix is

3

4

(tr
2 + 8) 4 if I1 --< 4,

=/.2(11-1) if I1--> 4

FIG. 2

diagonally dominant when the point lies above the upper curve. The test matrices have
a 6 and 0 _<- tr _-< 4. The points corresponding to these matrices lie on the dashed line in
Figure 2. Examination of the proof of Lemma 3 reveals that as the order of the positive
definite Toeplitz matrix increases, the convex hull of its eigenvalues approaches the set
of all values of the symbol function. Thus, the formula 8/(4-tr) closely bounds the
2-norm condition numbers of the matrices used in the tests.

The order of the test matrices is 4096, this favors no one algorithm over the others.
For example, the fast Fourier transform used in Algorithm 1 is genuinely fast only when
applied to vectors whose length is a power of two. Algorithm 2 also prefers an order
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divisible by a large power of two. However, it can be modified to accept any size
problem by partitioning the solution vector into pieces that are not of one uniform size.

The above algorithms are also compared with the block cyclic reduction algorithm,
a method which adapts well to parallel computation. Heller [Hell76] formulates the
algorithm in such a way as to allow submatrix blocks of varying dimension. In this way,
the method adapts to systems of linear equations whose blocked order is not divisible by
one less than a large power of two. Such a variable dimension algorithm requires a
storage scheme for the blocks that is more complex than the in-place partitioning of
vectors used to extend Algorithm 2 to problems of arbitrary order. For this reason, the
test matrices for the block cyclic reduction algorithm have order 4094.

Table 1 presents the parallel time, processor requirements, and the number of
arithmetic operations of the various algorithms for the pentadiagonal test matrices of

TABLE 1
Time, processor, and operation counts.

Time Processors Operations Storage

Algorithm 1 6 log n 2n 10n log n 2n
* Algorithm 2 18 log n 4n 4n log n 2n
f Algorithm 3 16 log n 2n 12n log n n
Block cyclic reduction 25 log n 4n 19n n

The linear systems (3.10c) solved via Cramer’s rule in time steps.
Algorithm does not include the computation of the Hurwitz factors.
The block cyclic reduction algorithm does not check for early convergence of the solution.

order n. The various entries show only the leading term. Algorithm 1 is faster than the
others due to its use of the fast Fourier transform. Algorithm 3 uses half the number of
processors of any other algorithm.

The results of the tests appear in Figure 3. There, the base ten logarithms of the
relative errors for each algorithm’s solutions appear as functions of the parameter tr

that determines the coefficient matrices. The matrices become more ill-conditioned
with increasing values of tr. Higher curves correspond to larger relative errors. The tests
have been performed on the Control Data Cyber 175 computer at the University of
Illinois for which the arithmetic precision is 14.35 decimal digits.

The highest curve of all belongs to Algorithm 1. Its smoothness indicates the
presence of strong rounding errors. The circulant systems of linear equations, which are
the algorithm’s basis, may be the source of these errors. Indeed, the Toeplitz matrix
obtained when tr 4 has a related circulant matrix which is actually singular, and the
algorithm fails. One step of iterative refinement, however, remedies this situation, as
shown by the lowest curve in Figure 3. Figure 4 reproduces the error curves for the two
versions of Algorithm 1, together with the relative errors in the solution obtained from
the Cholesky factorization of the Toeplitz matrix.

The second highest curve, in Figure 3, is that of Algorithm 2. Once again the
curve’s smoothness indicates persistent rounding errors. This cannot be caused by the
small systems of pivot equations (3.10a) which occur once at each step of the algorithm
(their coefficient matrices were observed to have condition numbers much less than
those of the original Toeplitz matrix). From the linear convergence of the rows of the
Cholesky factor of the Toeplitz matrix (see Theorem 3), it can be inferred that these
pivot matrices converge quadratically. This rate of convergence may be explained by
the fact that each succeeding pivot matrix is associated with a principal submatrix that
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-13

-14

1 3

FIG. 3. From top to bottom the curves represent Algorithm 1, Algorithm 2, block cyclic reduction,
Algorithm 3, and Algorithm followed by one step of iterative refinement.

-+/-2

-+/-3

-14

0 2_ 4 ’

FIG. 4. The top and bottom curves are reproduced from Fig. 3. The center curve represents the solution
obtained by Cholesky lactorization.



PARALLEL TOEPLITZ LINEAR SYSTEM SOLVERS 255

has double the order of the preceeding submatrix. Even for Toeplitz matrices cor-
responding to values of tr close to 4, this convergence is remarkably fast. For r equal to
4 the rows of the Cholesky factor do converge, but slower than linearly. The condition
numbers of such Toeplitz matrices grow with their order and are not bounded. In this
case, the condition numbers of the pivot matrices were observed to grow exponentially.
Only for this one particular system of linear equations the solution found by Algorithm
2 has no accuracy whatsoever.

The center curve displays the relative errors in the solutions produced by the block
cyclic reduction algorithm. This algorithm and the Cholesky factorization algorithm are
the only two that succeed in solving the system of linear equations corresponding to
tr 4. Both algorithms, however, attain only 3-digit accuracy for this problem.

The next lower curve represents the errors of Algorithm 3. They are close to and
often slightly smaller than those of the Cholesky factorization algorithm (see Fig. 4).
The similarity can be explained by the generally fast convergence of the rows of the
Cholesky factor to the coefficients of the Hurwitz factor (2.5) used by Algorithm 3. This
convergence slows dramatically for values of tr near 4, in which case the Cholesky
factorization algorithm has smaller errors. For the case tr 4, Algorithm 3 fails to
obtain the solution.
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A NONLINEAR PROGRAMMING PROBLEM IN
STATISTICS (EDUCATIONAL TESTING)*

ROGER FLETCHERt

Abstract. The educational testing problem is reviewed; it concerns a reliability coefficient which
measures how reliable are the student’s total scores in an examination consisting of a number of subtests. A
lower bound on this coefficient is obtained by solving a certain nonlinear programming problem. Expressions
for both first and second derivatives are given, and a scaling feature is described which enables the search
for a solution to take place along feasible arcs on the boundary of the feasible region. The SOLVER method
is used to generate the directions of search and numerical results are described. While an improvement over
previous methods is obtained, some difficulties over slow convergence are observed in some cases and a
possible explanation is given.

Key words, educational testing, reliability coefficient, nonlinear programming, SOLVER method

1. Introduction. An interesting problem is to determine how much can be subtracted
from the diagonal of a given positive definite matrix S subject to S remaining positive
semidefinite, S >= O. More precisely, if T is a diagonal matrix T diag Oi, then this
problem can be posed as the optimization problem

maximize trace (T)
T

subject to S T _>- 0, T=>0.

This is a convex programming problem, since the objective (Y.i L/i) is linear and hence
convex, and the feasible region is a convex set. (Clearly, if To, T1 are feasible then so
is T =(1-A)T0+AT1, A (0, 1); consider z. 7"(S-T;,)z. for any .z. Necessarily T_-<

diag S,, so the feasible region is closed and bounded and a solution always exists. This
problem has been found to arise in statistics in the area of educational testing and I am
very grateful to Paul H. Jackson (University of Wales, Aberystwyth, UK) for bringing
it to my attention. The statistical background is described in some detail in 2 and is
associated with determining how reliable is an examination consisting of a number of
subtests. A coefficient p is defined which measures this reliability and it is shown that
the solution of (1.1) gives a lower bound on p. In 3 it is shown that the problem (1.1)
can be reduced to a standard nonlinear programming problem via the solution of an
eigenvalue problem. Expressions for both first and second derivatives are shown to be
readily calculated. A "scaling" feature is described which enables the search for the
solution to take place on the boundary of the feasible region and obviates the need to
use a penalty function. The SOLVER method is used to solve the nonlinear program-
ming problem and numerical results with the method are described in 4. While an
improvement over previous methods is obtained, some difficulties over slow conver-
gence are observed. A possible explanation of these difficulties and suggestions for how
they can be avoided in future research are described.

* Received by the editors May 8, 1980, and in revised form February 1, 1981. This paper was presented
as an invited lecture at the Summer Research Conference on Numerical and Statistical Analysis, Newark,
Delaware, June 1980.

" Mathematics Department, University of Dundee, Dundee DD1 4HN, Scotland, UK. This paper was
prepared while the author was a visitor at Mathematics Department, University of Kentucky, Lexington,
KY 40506.
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2. Educational testing. This section explains the statistical background of the
educational testing problem which gives rise to the nonlinear programming problem
(1.1). The educational testing problem arises when N students take a test or examin-
ation consisting of n subtests. It is required to find how reliable is the student’s total
score in the sense of being able to reproduce this total on two independent occasions.
Guttman (1945) has defined a certain reliability coefficient p (<-1) such that p 1
corresponds to a completely reliable score. Since in practice it is only possible to carry
out the test on one occasion only, it is important to consider what information about
reliability can be determined from a single examination. In this case a lower bound on
p can be determined by solving the nonlinear programming problem (1.1).

The development is largely of Guttman (1945) although many of the ideas may
originate from Spearman (1904). The notation of Jackson and Agunwamba (1977) is
used. The given data for the problem is an N m table of scores [Xi] (e.g., Table 1)
such that Xi gives the score ot student on subject . Columns in the table are referred
to by ,Xi. The student’s total score is X ,iXi and .X denotes the column vector of
total scores. The mean score for each test is X (YXi)/N and the mean total score

TABLE 1
Data for the Woodhouse (1976) problems.

SUBJECTS
15 25 20 28 35 50 21 18 22 28 28
21 27 32 32 41 42 30 35 33 32 64
23 35 40 22 55 48 36 40 46 18 38
23 29 50 36 42 52 44 32 24 19 32
34 37 42 19 36 46 17 26 35 28 39
36 60 70 45 55 54 32 30 32 29 41
36 35 46 27 50 40 60 34 39 46 48
38 70 44 50 45 42 20 28 29 16 55
39 46 52 24 37 60 53
40 74 65 60 72 41 33
40 48 32 23 58 52 23
41
46
46
47
47
47
48
49
50 30 35 28
52 42 54 33
52 72 70 65
52 44 64 72
53 25 42 28
54 48 60 58

12
16
18
24
54
28 2O 47 36
63 20 48 40
40 22 49 42

30 46 43 54 54 23 46 44
36 24 52 64 36 28 50 46
4O 37

12 24 50 47 48 41 42 37
52 76 48 70 58 20 50 28
73 84 63 38 57 33 56 42
42 74 28 60 57 36 42 48
82 72 70 39 64 21 25 44
40 42 50 48 61 40 40 26
70 65 48 42 57 35 58 50 46 60 32 34
65 60 55 62 56 52 50 52 28 50 48 34

15 40 18 23
24 38 34 13
26 37 24 24
20 46 32 23
21 47 29 42

28
19
25
22
26

24 58 38 29 54 44 28
28 56 57 32 51 43 25
42 76 58 28 58 45 34
18 72 77 21 52 48 32
52 63 46 36 53 49 53
26 4 44 37 51 46 33
29 61 44

35
25
11
17
27
35
29
38

30 56 47 52 46
58 54 35
58 53 41
58 54
60 44
58 46
61 46
62 47
58 47
63 48
65 48

62 54 41 46 50 21 65 33 32
42 64 40 40 56 44 64 38 34
72 68 62 38 56 44 58 46 56
44 62 35 44 56 46 62 39 30
68 52 41 45 44 26 28 43 51
36 51 63 41 64 29 63 49 32

55 64 62 30 42 57 34 47 52 34 57 37 43
58
58
58 44
39 58
60 32
60 78
60 38
61 48
62 86

36
56 51 68 68 46 48 72 38 62 34 32 68 49 42
58 50 74 52 36 58 60 28 44 56 34 72 51 33
35 48 40 56 52 32 40 37 72 57 36 61 52 51
80 62 52 54 58 47 80 32 64 39 45 66 53 42
55 66 42 52 30 54 62 42 90 38 38 63 56 46
64 68 70 53 42 40 38 45 73 56 50 64 54 46

30 24 62 51 51 44 36 43 25 36 54 41
16 40 45 42 58 44 42 58 36 58 52 40 64 49

22 48
23. 30
27 41
24 32
35 18
32 32
30 42
35 37
27 48

36 31 16
45 4O 38

14 16 15 10
15 17 28 18
17 20 19 26
11 12 40 38
18 18 30 20
20 20 18 24
21 24 40 22
23 26 30 28

30
30
34
39
56
19
40
42
40
18
52

38 50 44 43 50
34 38 30 44 38
36 55 20 48 47
38 40 42 24 80
35 42 48 50 40
39 43 58 48 49
38 47 20 54 65
43 40 35 50 42

18 45 53 28
47 47 28 70
48 58 54 58
42 46 17 51
70 40 50 18
62 48 55 44
45 42 50 22

50 49 62 48 56 74 33 84 36 52 67 52 47 41 70 57 5394
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TABLE lmcontinued

63 35 38 55 38 58 46 59 63 48 62 58 38 68 53 47 48 75 44 25
64 79 65 76 68 57 32 33 52 46 72 62 52 54 54 48 55 35 60 54
64 50 52 35 60 56 52 64 76 36 63 44 48 56 52 49 63 38 48 46
65 37 42 70 50 58 58 62 66 34 53 64 62 72 53 50 74 45 62 57
65 82 74 63 36 62 60 58 60 38 57 63 58 70 51 51 55 55 64 58
67 44 46 54 52 58 55 68 80 40 28 65 50 71 54 52 65 70 74 68
67 48 56 80 44 64 62 35 70 62 58 72 56 72 60 41 78 38 75 68
68 62 78 56 50 53 62 54 80 64 62 48 54 74 62 76 58 45 80 36
69 39 30 42 38 62 40 32 68 56 68 71 58 73 56 43 79 47 73 70
70 52 20 76 69 61 64 56 69 54 64 66 58 78 52 72 32 47 71 71
72 54 72 38 54 51 66 65 76 72 54 49 60 74 57 42 68 62 22 46
72 42 48 70 70 57 42 40 68 53 62 74 60 78 58 52 55 48 72 75
74 64 66 70 42 60 40 78 53 48 69 67 76 77 59 68 58 55 16 60

Z 78 68 62 63 35 56 63 80 74 43 71 78 62 76 59 68 70 75 72 75
79 37 42 28 64 52 40 38 72 72 56 52 58 82 60 61 75 66 58 58
80 62 30 65 59 51 68 57 74 48 78 71 42 54 61 62 78 69 78 8
82 85 80 52 44 57 70 69 64 71 85 76 64 56 63 67 44 70 60 26
82 40 74 52 52 64 74 64 76 46 64 46 51 80 63 68 65 55 70 67
84 42 76 70 55 61 90 80 56 41 58 82 72 72 67 73 85 60 76 78
84 42 54 60 42 58 42 60 52 70 77 68 68 74 59 71 79 65 44 75
86 85 88 80 37 63 80 72 79 42 73 42 68 82 65 73 85 62 80 82
87 53 51 62 68 56 60 42 78 42 62 74 62 84 65 75 63 75 68 83
89 41 60 40 60 54 88 88 83 57 84 64 64 80 62 65 90 78 88 52
90 73 78 77 52 42 56 50 58 59 72 84 70 84 62 63 82 85 78 87
90 81 74 64 48 38 86 52 80 63 66 68 60 62 63 74 75 81 84 94
96 85 88 90 72 44 58 62 70 74 64 74 72 64 64 84 85 78 88 54
97 56 55 35 68 70 78 76 56 72 83 69 65 86 65 76 82 89 92 90
99 75 65 88 54 42 80 90 88 58 78 88 70 88 63 82 72 71 98 80
100 65 75 70 70 60 83 85 70 62 72 90 72 84 64 78 88 80 80 72

regarded as having been sampled from a universe of tests, and [.] denotes the
expected value on this universe. Then it is assumed that

(2.1) Xii Ti "3t- Eij Vi, ]

where

(2.2) g"[Eii] 0.

The quantities Ti] represent hypothetical unknown "true scores" and true total scores
T, mean scores T. and mean total score T are defined as for the observed scores, and
are the expected values of the corresponding observed scores from (2.2).

To define the reliability of the total scores in the test, the variance of the total
scores from the expected mean score

2_

(2.3)
1

=N- 1
$’[(X- :)]

is defined. Division by N- 1 and not N expresses the fact that one degree of freedom
is lost by taking the mean total score T. Reliability of the test can be regarded as being
the correlation in the student’s total scores from two independent tests selected from
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the hypothetical universe. Let [1Xii] and [2Xii] denote from two such tests and 1.X and
2,X the corresponding total scores. Then Guttman (1945) defines the reliability
coefficient p by

2 1 E, g’[(1X- T)(2X, T)]
(2.4) P 2N-1 O’x

This is seen to be a correlation between the observed total scores; in a perfectly reliable
test 1Xg 2X, and it follows from (2.3) that p 1. Assuming that the errors Ei in the
total scores are uncorrelated, so that

(2.5)

it follows that

(2.6)

where

(2.7)

’[,E,. 2E,] ’[1E,]’[2E,],

2

2 1
Z (T- ).O’T--N_ 1

Clearly a reliability coefficient close to 1 indicates that observed total scores are very
reliable. One practical question which is of interest is precisely what value of p indicates
that a test is sufficiently reliable; that is to say, should one aim for p -> 0.9, or p -_> 0.8,
or some other target. Possibly the criterion should depend upon n also. Some practical
observations are made at the end of 4.

Unfortunately it is not practical to estimate p by making two or more independent
tests unless some way of inducing complete amnesia in the students after each test can
be found! Therefore it is desirable to determine what information can be deduced from
a single test. This can be done by relating trx and cr to certain variance-covariance
matrices. The variance-covariance matrix ,V-,x of observed scores from the expected
mean observed scores on the subtests is defined as

[,x]i

(2.8)

1
Z [(x,- [x,.])(x,- [x])]N- 1

1 y [(x,,.- .)(x,- V)].N--I-
Likewise matrices ZT and ZE are defined by

1
(2.9) [ET]ik -N- 1

(Tq- T)(Tk- Tk),

1
(2.10) [:]i-N-1 ’[E,iE,k].

If we assume uncorrelated errors in the sense that

(2.11) $’[EgiT]= $[E,]Ta, Vi, j, k

and

(2.12) ’[EqEik] [Eii]’[Eik] Vi, j, k, j k,

then it follows from (2.2) that ,V_, is a diagonal matrix and from (2.9) and (2.1) that

(2.13) Ex -’T "- ’.
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It also follows simply from the definitions (2.3) and (2.9) that

2 T(2.14) trx Y [EE]jk =.e 5:xg.,
j,k

where .e (1, 1 ,1) r, and likewise that
2 T(2.15) trr .

Hence, writing the diagonal elements of z for convenience as 0( [z]), we can
express (2.6) as

(2.16) p2 1 i 0i
2
X

The situation can be summarized in the following way. The matrix x can be
estimated by

1
(2.17) [EX]ik --N- E (X,i-.)(X, --Xk),

1 i

which is acceptable if N is large (see Guttman (1945)), and can be regarded as being
known. The matrices 7- and :EE are unknown but being variance-covariance matrices
they are necessarily positive semi-definite. These conditions can be written using (2.13)
as

(2.18) Ex z _--> 0, z_->0

and can be regarded as constraints on the values of the 0g. Clearly, then, the Oi satisfy

(2.19)

say, so that from (2.16)

Y, 0i <=max Y, 0i subject to (2.18)
Oi

(2.20) :z bp_-->l 2.
O"X

Thus, by solving the optimization problem in (2.19) which defines b, a lower bound on
p is obtained. This is the best that can be done on the basis of a single test. If solving
for b indicates that p _-> 0.9, or whatever value is considered suitable, then it is possible
to conclude that the test is sufficiently reliable.

3. Solving the optimization problem. It is convenient to simplify the notation here
and write T Ez diag 0i and S Ex as the matrix calculated in (2.17). Then (2.19)
becomes the optimization problem (1.1). An earlier approach to solving (1.1) is due to
Bentler (1972) who writes S T FF7r, where F is unknown and minimizes trace (FF7")
subject to certain conditions. This is clumsy in that there are a large number of variables,
and it also does not account for the condition T => 0. Furthermore, some difficulties
over convergence are experienced. Woodhouse and Jackson (1977) attempt to solve
problem (1.1) by a search in the space of the 0i, but it seems that their method does
not work well on other than small problems.

In this paper it is shown that (1.1) can be written as a nonlinear programming
problem in conventional form. What is possibly the most obvious way of doing this did
not occur to me initially but may be worth pursuing and is described at the end of 4.
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The approach given here is to consider the generalized eigenproblem

(3.1) TX SXU,

with an eigenvalue matrix U =diag tzi and an eigenvector matrix X [1, .x2 n]
which collect eigenvalues and vectors/xi and .xi for 1, 2,..., n. Two properties of
the eigensystem are

(3.2) XrSX I

and

(3.3) XrTX U.

From (3.2) X-1 exists so the columns ofX are independent. A simple result which uses
these results is the following.

LEMMA 1. S-- T>--O iff tzi <- 1, 1, 2, n.
TProof. S T >- 0 implies .x TSx. = x TTxi x. Sx.il,i from which tzi -<- 1 follows.

Conversely any vector y can be expanded as y X.a and

yT(s_ T)y a.T(xTsx-XTTX)a.
T. (z- u). >_- o

if ]-i 1 1, 2,..., n, which shows that S- T->_ 0. I-!
Thus, to solve (1.1) the unknowns are regarded as 01, 02, 0n (or T). The

eigenproblem (3.1) is solved for any such T and the eigenvalues txi are regarded as
nonlinear functions/xi(T). Then problem (1.1) can be restated as

(3.4)

minimize Oi
0i

subject to [.14(01, 02,. On) 1,

This is a nonlinear programming problem in standard form. The objective function is
linear and so the location of the solution is usually determined by curvature in the
constraints Ii(T)<- 1. Thus it is important to use a numerical method for solving (3.4)
which uses second derivative information and such a method is described later in the
section. It is also convenient to order the eigenvalues as

(3.5)

in which case a possible alternative statement of the nonlinear constraints in (3.4) is to
have just/xl(T) =< 1. However I(T) is a nonsmooth function when/xl is a multiple
eigenvalue. When this situation arises, or nearly so, it can be advantageous in method
(3.15) below to have present linearizations from all the constraints rather than just
/z (T)-<_ 1. Thus the possibility of having a single nonlinear constraint is not explored.

It is important first of all to determine formulae for derivatives to be used in the
numerical method. Writing (3.1) as

(3.6) Tx.i-- Sx.i.l,i, 1, 2,..., n

and differentiating with respect to 0i yields

(3.7)
Oldl, s_ OO ) OX~
190] X" r tziS)
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Premultiplying by .xf and using (3.6), (3.2) and T diag 0g gives

0/.,/,i T 0T 2(3.8)
00]

X. X.i Xji.

This gives the required expression for the first derivative of/-/,i with respect to 0. for any
i, j. In passing it is noted that a more complicated dependence of T on the 0g could be
handled readily. To obtain second derivatives, (3.7) is differentiated with respect to Ok
giving

c32T), Xi-- (OTOtxis) OX’i

OT Old,is) Oxi 02Xi

Using 02r/OOk --O, premultiplying by .xr and using (3.6) and (3.2) yields

=x
OOk

(3.9)
20i

from (3.7). The matrix T-#S is singular, and the generalized inverse matrix (T-S)+

satisfies
T .S (T .S)(T .S)+(T .S);

so using this in (3.9) together with (3.7) gives

(3.10)
00 00 00 00 00

i.

To simplify this expression the following result is used.
LZMMa 2.

T

(3.11) (T-iS)+=

where

(3.12)

Proof. From (3.2) and (3.3)

T Id, S X-T U y,iI)X-Now U-iI is diagonal with zero elements when txo tzi, so (U--iiI)/ is diagonal
with corresponding zero elements and elements 1/(-i) otherwise. Thus

(T iS) X(U iI)+ X

from which (3.11) follows.
Substituting (3.11) into (3.10) and using the form of OT/00i gives

02 2
XkpXkiXipXji(3.13)

00i 00 z, -o
which is the required expression for second derivatives. The resulting matrix of second
derivatives of is referred to as V. If I has c elements, and defining y io
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and di 1/(/xi-/zp) as elements of the n x c matrix Y and the ci c diagonal matrix
D respectively, then (3.13) can be written

(3.14) 72/./,i yiDiyiT.

This shows that V2/xi has the same rank as yi which is at most ci, and ci <-- n 1. It follows
that vE/xi is singular and the reason for this is seen when ideas of scaling are described
below. It also follows under the ordering (3.5) that vE/x is positive semidefinite which
is consistent with the convexity result in 1. Equation (3.13) also shows that vE/zi is a
discontinuous function of T if the multiplicity of an eigenvalue changes. This fact may
be the cause of some numerical difficulties when near multiplicity occurs at the solution
to (3.4).

A feature of problem (3.4) which has implications for the choice of method is the
possibility of scaling. It is a property of (3.1) that scaling T kT causes Ii klxi for all
and leaves .x unchanged. Consider any point T diag 0i which is strictly feasible in

(3.4) and therefore has/zl(T)< 1 (see Fig. 1). It is possible to replace T by another

1] contours of

_1

"..w, \ \ \

Fo. 1. Scaling and the feasible arc search.

point (T(k) in Fig. 1) by scaling T by k 1//zl so that/zl(T) 1 at the new point which
is therefore on the boundary of the feasible region. Also trace(T) is increased so the
value of the objective function is improved. Since the eigenvectors are unchanged,
derivatives at the new point are available at no extra cost. Also if T(k)is an iterate in
some method and p(k) is a search direction in the tangent plane (a usual feature) then
it is possible to search along the feasible arc which is obtained by scaling points on the
line T(k)+ ap(k) to lie on the boundary of the feasible region as illustrated in Figure 1.
This feature implies that there is no need to use a penalty function approach to solving
(3.4).

A numerical method which is likely to be suitable for solving (3.4) is the SOLVER
method (see Fletcher (1974)). In this case the quadratic programming subproblem

minimize .p 7-W(k).p .eP

(3.15)
subject to pTV.(k < 1- (k

i Pi >=--Oi, 1, 2, ", n

is solved on the kth iteration. The constraints in (3.15) are the constraints in (3.4)
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(k)linearized about T(k), and/zi etc. refers to tzi(T(k)). The matrix W(k) is defined by
(k) (k)(3.16) W(k)

hi V2I.Li
(k)where the A are Lagrange multiplier estimates taken as the multipliers of the linear

Tconstraints in (3.15) for iteration k-1 (if k > 1), or as h1) =.eTV./I/(V./Xl V./Zl) and
A(1) =0, i>l, ifk=l.

The method has been programmed as described here in the M.Sc. thesis of
Jayarajan (1979). The quadratic programming problem is solved by subroutine
VEO2A from the Harwell Subroutine Library. A simple line search is used starting
with a unit step c)-1 and using repeated quadratic interpolation (but limited to
reducing ak by at each step) until a better value of the objective function is obtained.
The eigenvalue problem is solved by the technique of calculating Choleski factors
S LL (once and for all) and rewriting (3.1) as the standard eigenvalue problem

(3.17) (L-TL-) Y YU

where Y LrX. This is implemented using a subroutine from the NAG library. In fact,
from (2.17) S can be written as S MM where

1(3.18) Mii x/X-l (X

and L can be calculated in a more stable way numerically from QR factors of the
matrix M.

4. Numerical results and discussion. Jayarajan (1979) gives numerical results
which check out the method on some small problems and illustrate the rapid (second
order) rate of convergence which is to be expected from the SOLVER method. Some
larger problems given by Woodhouse (1976) have also been solved. These are obtained
from the data given in Table 1 which corresponds to 64 students and 20 subtests.
Different selections from the set of subtests are used to generate different problems.
Jayarajan uses the six problems generated by the following columns of Table 1"
(1, 2, 5, 6), (1, 3, 4, 5), (1, 2, 3, 6, 8, 10), (1-8), (1-12) and (1-18). The full set of 20
subtests is in fact not used. The results are given in Table 2. Each problem is solved
from two different initial values; the first from Woodhouse’s (1976) best solution and
the second from T1 I, suitably scaled. The number of iterations required is given in
the respective columns of Table 2. A feature of the SOLVER method is that a number

TABLE 2
Numerical results (Jayarajan (1979)).

Best function value b in (2.19)
Number of Lower bound

n iterations m SOLVER Woodhouse on t9

4 3 8 542.7736 542.7 .796
4 6 25 2 633.1441 633.2* .854
6 3 10 305.4817 305.6* .968
8 15 25 3 743.6962 741.6 .978

12 15 25 3 641.4196 628.4 .957
18 15 25 3 750.7517 608.0 .993

+--terminated due to slow convergence; *--not a feasible point.
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(m, say) of the constraints which are linearizations of/i(T) -< 1 are active on each
iteration. After a few iterations this number is observed to settle down to a single value,
and this is the value of m which is tabulated. A main result which the table shows is
that the method obtains a better solution than that which Woodhouse (1976) gives,
especially when n is large. Therefore the method appears to be an improvement on
others which have been tried. However, there is one adverse feature; slow convergence
is observed when the value of m is greater than one. This is obviously related to the
situation in which nearly multiple eigenvalues occur. In fact a modified version of the
method was tried in which the set I1 ={m + 1,... ,n} is used to replace the set
I {2, ., n} which arises in the definition (3.13) of 72/,/,1 when/-/,1 >/-/,2. The purpose
of this is to try to anticipate nearly multiple eigenvalues and in fact the results in Table
2 are computed using this modification. However, Jayarajan (1979) shows that neither
version exhibits rapid convergence. Exhaustive checks on differences and first order
conditions have been carried out but no fault in the computer code has become
apparent.

One feature which these checks do show up is that near the solution when m > 1,
small perturbations to T make large changes to the eigenvectors. This ill-conditioning
suggests that to transform using (3.17) might be numerically unstable. Therefore an
orthogonal (eigenvector) decomposition of $ QA2QT" might improve matters. This
is best achieved by making a singular value decomposition M VAQT" of the matrix
M in (3.18). However a referee makes the pertinent point that eigenvectors corres-
ponding to close eigenvalues are inherently badly determined, irrespective of the
numerical method used to solve the eigenvalue problem. Since the first and second
derivatives (3.8) and (3.9) involve these eigenvectors, it is likely that ill-conditioning
will continue to cause difficulties.

A likely explanation of the ill-conditioning is the following. As functions of the
parameter T the trajectories/z(T) 1 are unlikely to cross but behave as illustrated
in Fig. 2. It can be seen that constraint linearizations remote from the solution are likely
to predict a value of m > 1, although the value m 1 actually holds at the solution. In
the neighborhood of the near crossing point, the eigenvectors swing round rapidly from
one vector to another, so that the eigenvectors corresponding to different eigenvalues
appear to swap over. This accounts for the ill-conditioning and also suggests that the

FIt3.2. Eigenvalue trajectories.
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idea of replacing the set I1 as described above may not be good. We hope to investigate
these possibilities in future work.

Another possibility is to set up the nonlinear constraints corresponding to the
condition S- T _-> 0 in a simpler way. If the eigenproblem

(4.1) (S- T)X XU

defines eigenvalues tzi as functions /xi(T), then S-T>_-0 is also equivalent to the
nonlinear constraints that/x(T) >-0 1,2,. ., n. Furthermore, an analogue of the
scaling idea in 3 is a shifting process. That is, if T is feasible and/x >--/z2 _-> ->/xn >
0, then a shift T T +/xnI causes the eigenvalues to change to/xi /zi-/x,. As in 3,
T is moved to the boundary of the feasible region and the objective function value is
improved. In a similar way a line search along a feasible arc can be determined by
shifting the points Tk)+ apk). We hope to investigate whether this method or that
described in 3 is best able to handle the ill-conditioned nature of the problem.

The above comments are all concerned with the numerical properties of the
optimization method. The results of Table 2 also throw a little light on the statistical
question of how large p should be for a reliable test. The lower bound in (2.20) for
each test problem in Table 2 has been calculated from Jayarajan’s solution. A study of
all subjects in Table 1 indicates a definite trend that the students are listed in order of
increasing scores (approximately). Thus it is likely that these tests are reliable, and
therefore that the lower bound on p of about 0.8 or better in the table should be an
indication of a reliable test.
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Abstract. In this paper we construct and analyze high order finite difference discretizations of a class
of elliptic partial differential equations. In particular, two one-parameter families of fourth order HODIE
discretizations of the Helmholtz equation are derived and a discretization optimal with respect to a certain
norm of the truncation error is identified. The use of compact nine-point formulas of positive type admits
both fast direct methods and standard iterative methods for the solution of the resulting systems of linear
equations. Extensions yielding sixth order accuracy for the Helmholtz equation and fourth order accuracy
for a more general operator are given. Finally, numerical results demonstrating the effectiveness of the
discretizations for a wide range of problems are presented.
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1. Introduction. We consider the numerical solution to the problem

Lu =-aU,,x + CUyy -I-fL/ g on R,
(I.I)

u b on 0R

where a > 0, c > 0, f <= 0 are constants and R is a rectangular domain with boundary
OR. We will extend our methods to slightly more general operators L in the sequel.
Problems with mixed boundary conditions and some non-rectangular domains are
treated in [4], [5] and [6].

We construct and analyse finite difference discretizations of the HODIE type [23].
The method yields high order accurate formulas that are compact as possible, require
multiple evaluations of the source function g, yet do not involve derivatives. For the
class of problems considered here, it produces coefficients of positive type. The
associated linear systems of difference equations have the same block tridiagonal
structure required for the straightforward application of both fast direct solution
methods and standard iterative methods; in fact, the coefficients are 0(h2) perturba-
tions of the standard nine-point compact discretization of the Laplacian.

We summarize the HODIE method in 2. Details are given in [4], [23] and [24].
In 3 we derive two one-parameter families of fourth order discretizations based upon
the location of certain auxiliary points where the source function g is evaluated. An
error analysis is given in 4 in which a discretization optimal with respect to a certain
norm on the truncation error is given. Properties of the linear systems of difference
equations arising in the methods are outlined in 5. In 6 the results of numerical
experiments undertaken to evaluate the performance of the algorithms for problems
of varying degree of difficulty are summarized. Finally, extensions to slightly more
general differential operators and a technique for combining members of the fourth
order families to obtain sixth order accuracy are described in 7 and 8.

2. The HODIE method. Let G denote the intersections of a rectangular grid with
mesh sizes hx hy placed over R. For each point p G f3 (R -8R) we denote the closed
grid rectangle centered at p by Rp. A HODIE discretization of the general linear second
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order partial differential equation (PDE) Lu =g takes the form

(2. l a) LoU =Iog, p G,

(2.1b) LoU= Z aoU, Iog Z
qDp qc=Ep

Here Uq is the value of the unknown function u at one of the nine grid points in Ro
which we call the set of discretization points and denote by Do. The symbol gq denotes
the evaluation of g at one of another set of points in Ro called auxiliary or evaluation
points and denoted by Eo. The number of points and their location depends upon the
desired order of accuracy of the scheme. The acronym HODIE stands for High Order
Differences with Identity Expansion.

The values of the coefficients ao, and flo, are determined by requiring that the
difference approximation be exact on some finite dimensional linear space S; that is,
we require that Los IoLs for all s e S. Let {st:l 1, , dim (S)} be a basis for the
space S, where dim (S) denotes its dimension; then the difference equation at p must
satisfy LoSl- IoLst 0, 1,..., dim (S), or more explicitly,

(2.2) Z ao,(st),- Z So,(Lst),: 0 I= 1,..., dim ($).
qD qE

We call this homogeneous linear system the HODIE equations. Usually the number of
evaluation points is dim (S)-8 (one 8 is used for normalization), but a propitious
choice of Eo can often reduce this number (equivalently, some/3’s are zero).

The existence of HODIE discretizations exact on polynomial spaces , (the space
of all polynomials of degree n or less) is studied in [23] and [6]. It is known, for instance,
that nontrivial HODIE discretizations of the Laplacian exist that are exact on 8,
although several classes of such discretizations exact on 7 are known (these are given
in this paper). This severe restriction does not occur in general, and HODIE discretiz-
ations exact on, with n > 7 have been found for equations with lower order derivative
terms. When a HODIE discretization exact on , exists, then the order of its truncation
error, Tou =- Lou Iu, is usually O(h 1) for u C"+1.

The use of nonpolynomial basis elements to model behavior such as singularities
is also possible. The compact discretization of E1-Mistikawy and Werle [12], for
instance, which is based upon the representation of U as a piecewise exponential
function, has proven successful in approximating solutions of two-point boundary value
problems with boundary layers.

It is clear from (2.2) that if the coefficients of the PDE operator vary on R, then
the difference equation coefficients aoq and/3o will vary with p. The computation of
coq and/3o may be done by a computer program for solving (2.2), and proper choice
of basis functions st can reduce the cost of this operation. The computational complexity
of the method for S , is analysed in [24]. In that study, the number of arithmetic
operations required to discretize and solve (by band elimination) a general linear
problem on a rectangle with an rn x rn grid was found to be 2m4 + 1079m 2 for a fourth
order HODIE method and 64(m + 1)4+ 320(m + 1)2 for bicubic Hermite collocation,
another fourth order method. Such operation counts only give a very rough comparison
between the methods. For example, they neglect the costs of evaluating the coefficient
functions of L as well as the right side g, which can become significant when these
functions are even only moderately complicated. Also, it is assumed that appropriate
locations for evaluation points in the HODIE method are known a priori, which is not
always so. Recently however, Leventhal [20] has derived explicit formulas for the
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coefficients of a fourth order compact discretization of Lu =g with evaluation points
the same as discretization points. For constant coefficient problems the operation
counts reduce to 2m4+ 13m2 for HODIE and 64(m + 1)4 for collocation.

Finally, we note that the method is also applicable to problems with nonrectangular
domains [6], general linear boundary conditions [5], and more than two space variables
[21]. Similar techniques have been studied for two-point boundary value problems
[22], and parabolic problems [1], [8].

3. Families of fourth order discretizations. We now return to problem (1.1). A
simple change of variable yields the equation

(3.1) 2u +fu g

on a rescaled domain R, and hence we assume a c without loss of generality. To get
an O(h 4) HODIE method we need Tps 0 for all s s. Since the dimension of 5 is
21 we need 13/3’s, although most will be zero by symmetry in our case. To simplify
notation we let hx h, hy Oh, p (0, 0) and drop the subscript p where no confusion
results.

Define the HODIE discretization P(h, Ix, O, f) by

(3.2) LP’"u IP’t’g,
LP’t’U=(1/6h){aoU(O, O)+a[U(h, 0)+ U(-h, 0)]

+aE[U(O, Oh)+ U(O,-Oh)]

+a3[U(h, Oh)+ U(-h, Oh)+ U(-h, -Oh)+ U(h, -Oh)]},

fl0g(0, 0)+/31[g(ixh, 0)+ g(-ixh, 0)]

+/32[g(0, IxOh + g(O, -ixOh )],

where 0 < Ix =< 1 is a parameter. Similarly we define Q(h, Ix, O, f) by

(3.3) LO..U IO,.g,
L’t’U=(1/6h2){aoU(O, O)+al[U(h, 0)+ U(-h, 0)]

+a2[U(0, Oh)+ U(O, -Oh)]

+ as[U(h, Oh)+ U(-h, Oh)+ U(-h,-Oh)+ U(h,-0h)]l,

B0g(0, 0)+/31[g(Ixh, IxOh + g(-Ixh, IxOh
+ g(-Ixh, -IxOh) + g(Ixh, -IxOh)].

The coefficients ai and/3j may be different in the two cases. Their derivation is greatly
simplified by the following lemma whose proof follows easily from symmetry.

LEMMA 3.1. The HODIE discretizations P(h, Ix, O, f) and Q(h, Ix, O, [) of (3.1) are
exact ]:or all monomials xiy with at least one of and j odd.

THEOREM 3.2. The discretization P(h, Ix, O, [) of (3.1) is exact on s ]’or all
0 < Ix <= 1, 0 > 0 if and only if

ao -10(0 + 02)/02 + 2(3- Ix2)F + (Ix2_ 1)F2/2,
al (502-0)/02+
a2 (50 O:z)/O - + pIx2F/2,

03 (p + 02)/(202),
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/30 [3/z 2 -(O + 1)/2]/(12/x2) + (/22 1)F/12,

11 1/(12/,=),
/2 0/(12/,2),

where F= h2fand p =[12 + (,2_ 1)F]/[12 + (/,2_ 1)02F].
Proof. By Lemma 3.1 we need only satisfy Le’"s IP’"Ls for the functions 1,

x2-h 2, y2-(0h)2, x2(x2-h2), y2(y2-- (0h)2) and (x2-h2)(y2-(Oh)2), plus a normaliz-
ation. This leads to a system of seven linear equations, nonsingular for all 0 </z <-1,
whose straightforward solution leads to the coefficients given above. QED

THEOREM 3.3. The discretization Q(h, lz, O, f) of (3.1) is exact on 5 if and only
if at least one ofI 1, 0 1 orf O. In these cases the coefficients are given uniquely by

ao -10(1 + 02)/02,
c1=(502-1)/02,

c2 (5- 0)/0

c3 (1 + 02)1(2o),
/30 (6tz 2-1)/(6/x2),
/3, 1/(24/22),

co -20 + (6-/xZ)F -(1 -/.t 2)F2/2,
C[ 2 4,

o3 1 + p, ZF/4,
/30 (62-1)/(6/z2)- (1 -/xZ)F/12,
/31 1/(24/x:), and

ao -20 + 20oF,

O (1002-2)/(1 + 02),
t2 (10- 202)/(1 + 02),
0.3 1 +oF,

o 100/3,

Q(h, tx, O, O):

Q(h,/x, 1, f):

O(h, 1, 0, f):

where F h2f and p 02/[2(1 + 02)].
Proof. By Lemma 3.1 we need only satisfy L’"s =I’"Ls for s 1, x2-h 2,

y2- (0h)2, x2(x2- h2), (x2- h2)(y2-(Oh)2), plus a normalization. (The function yZ(y2_
(0h)2) leads to the same HODIE equation as x2(x2- h2) in this case.) This leads to a
system of six linear equations in the unknowns ao, a 1, a2, c3,/30 and/31. If f # 0, 0 1
and/x # 1 this system is inconsistent; otherwise, it is nonsingular and its straightforward
solution yields the coefficients given above. QED

Several specific discretizations in these families have been considered previously
for the case of the Poisson equation. For example, P(h, 1, 1, 0) is given in 19] and
P(h, 1, 0, 1) is given in [29]. Similar families were derived by Esch [13] using Fourier
series methods.
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When/x 1, no more than one evaluation of the right side g per grid point is
needed to construct the system of finite difference equations. When/ , an average
of two evaluations per grid point are needed and for arbitrary/ up to five evaluations
per grid point are required. However, in some cases a HODIE discretization with
0 </ < 1 can produce an error small enough to warrant its use in spite of an increase
in the number of evaluations of g. Some stencils of particular interest are given in
Fig. 1.

(a) D iscretization P(h,l,8.f) (b) D iscretization Q(h.l,8,f)

-eO + 0

PO

(c) D iscretization PSflf (d) Discretization Q(h,O.51

hf

4

-20 4 + 92 fu

FIG. 1. Some discretizations in the fourth order families P(h, Ix, O, f) and Q(h, Ix, 8, f), where a
(1002-2)/(1 +02), b=(10-202)/(1+02), and r=02/(12(1 +02)). Stencils are given at half-grid points.
The discretizations in (a) and (b) also apply in the case of variable f; see 7.

4. Error analysis. The first nonzero terms in the truncation error expansions of
the schemes of Theorems 3.2 and 3.3 can be determined by the usual Taylor series
analysis; details are given in [4]. Let X"Y’ denote the differentiation operator of order
n in x and m in y (hence X"ynu =on/’U/OX" oyn). We then have the following
theorem.

THEOREM 4.1. Suppose u e C8. The truncation errors of the HODIE discretizations
(3.2) and (3.3) of (3.1) are then

P(h, tz, O,f): (h4/720){[(5p,2-2)+(p,4- 1)h2f/6]X6

+[(5pp, 2- 2)+ p (p,4_ 1)O:Zh2f/6]y:Z

+5[(/x 2 1 020IX4 y2 + 5 [(/x 2 1)020 1]Xz r4}u + O(h 6),

Q(h,/x, O, 0): (hg/720){[5tx2-2](X6+ g6)+ 5[(602+ 1)/x2_(02+ 1)]Xy2
+502[(6+ OZ)2 (02 + 1)]x2g4}u + O(h6),
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Q(h, 1, O, f)" (h4/720)I3(X6 + 04 y6)_ 2502(X4 y2 +X2 y4)}u + O(h6),
2Q(h,/z, 1, f)" (h4/720){[5/z -2](X6 + y6)+ 5172_2](X4y2 +X2y4)}u + O(h6),
2P(h,u, 1,D" (h4/720){[5/z -2](X6+ Y6)+5[/z2 2](X4y2+xZy4)}u+O(h6).

It is easy to see from Theorems 3.2 and 3.3 that, for h sufficiently small, these
discretizations are of positive type [7]; hence, the discretization error, max {IUp- upl,
p e G}, is of the same order as the truncation error. Thus, each method in the families
presented here has fourth order accuracy for all u e C6.

For Laplace’s equation (f=g=0), the discretizations P(h,/x,l, 0) and
Q(h,/x, 1, 0) reduce to the well-known "-20" formula, which has order of accuracy
six for u C8. The discretization Q(h, x/.2, 1, f) also has increased accuracy in some
cases. From Theorem 4.1 the truncation error of this discretization is (-ha/720)V6u +
O(h6). When V2u g this is (-ha/720)V4g + O(h 6) and so this discretization has sixth
order accuracy for Poisson’s equation whenever g is harmonic.

We now consider the value of 0 </x -< 1 which produces the smallest truncation
error in the case of square grids (0 1). In each case the error takes the form

Tpu (h 4/720)[r(/x )(X6 -- y6) + s(/z)(X4 y2 +X2 y4)]u + O(h 6).
Since we do not know anything about the derivatives of u in general, it is natural to
seek that value of/z that minimizes the max norm of the 2-vector [r(/z), s(/x)]. This
then determines a set of evaluation points which is optimal with respect to this choice
of norm. A straightforward analysis shows that the minima occur at /x x/3 for
Q(h, tx, 1, f) and at/ 1 for P(h, tx, 1, f). Table 1 gives values of the error norm for
various choices of the point set, and indicates the relative accuracy we might expect
from each discretization. The numerical experiments of 4 support these conjectures.

TABLE
Values ofan error norm for various choices ofevaluation

points.

Evaluation point set

O(h, x/0--, 1, f)
O(h, 1/2, 1, f)
P(h, 1, 1, f)
P(h, 1/2, 1, f)
Q(h, 1, 1, f)

max [[r(tz)[, Is()[]

0.5
2.5
5.0
8.75

25.0

5. Properties of the systems of ditterence equations. The following theorem
summarizes the properties of the matrices generated by the HODIE discretizations of
the previous section. We assume that an (n + 2) (m + 2) grid is used and the nodes are
numbered from left to right and bottom to top (the natural ordering).

THEOREM 5.1. Let -A be the nm nm matrix generated by any of the HODIE
discretizations of 3 on a rectangle with Dirichlet boundary conditions. Then, for h
sufficiently small, A is real and

a) symmetric,
b) an m m block tridiagonal matrix, each block being itself an n n symmetric

tridiagonal matrix,
c) irreducible 1,
d) an L-matrix1,

Definitions of these standard terms can be found in [30].
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e) weakly diagonally dominant1, and
f) positive definite.
For a matrix with these properties, much of the standard theory of iterative

solution methods applies. In [2], numerical experiments demonstrate the effectiveness
of the adaptive iterative algorithms of Hageman and Young 14], 15] for linear systems
resulting from HODIE discretizations.

In addition, the symmetric block tridiagonal nature of these linear systems show
that fast direct methods such as block cyclic reduction, fast Fourier transform and tensor
product methods [11 may also be applied to HODIE discretizations. This combination
has lead to extremely fast and highly accurate software for this problem [17], [18], [19].

6. Numerical experiments. We now report the results of substantial numerical
experiments undertaken to support the claims made about the fourth order HODIE
methods described above. In particular, we wish to assess the effect on accuracy of the
placement of the evaluation points. The methodology used in the tests is based upon
the framework presented in [25] and [27] and implemented in the PDE software
evaluation system [3]. A complete list of all generated data is given in [4].

We select a set of ten Poisson and Helmholtz problems from the PDE population
[28]. Each problem is defined on the unit square [0, 1][0, 1] and all boundary
conditions are Dirichlet type. Some problems depend on parameters and counting each
parameter value used we have 14 test cases. The problems are listed below.

Problem 3.
Operator"
Solution"
Case 3-1
Features:

Case 3- 2
Features:

Problem 4.
Operator:
Solution"
Case 4-1
Features:

Problem 7.
Operator:
Solution"
Case 7-1
Features:

Problem 8.
Operator:
Solution:

Case 8- 2
Features"

Poisson
C(Xa/Z--x)(ya/-- y), C 1/[aa/-a-a/-]2

(a 1.5)
Solution has singular first derivatives along the lines x 0 and
y=0.
(a 2.5)
Solution has singular second derivatives along the lines x 0
and y 0.

Poisson
3 exp (x + y)xy (1 -x)(1 y)

Entire, slowly varying solution.

Poisson, V2u 1, u 0 on OR
Series solution computed with -10-9 accuracy.

Singular second derivatives in solution at four corners.

Poisson
b (x)b (y), where b (x) 1 for x < 0.35, b (x) p (x) for 0.35 -<_
x -< 0.65, and b (x) 0 for x >_- 0.65.
p(x) is a quintic polynomial determined so that b (x) has two
continuous derivatives.

Solution has a wavefront with a discontinuous third derivative
along a right angle through the center of the domain connect-
ing two fiat areas.
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Problem 9.
Operator:
Solution"
Case 9- 2
Features:
Case 9- 3
Features:

Problem 10.
Operator:
Solution:
Case 10-7
Features:

Problem 17.
Operator:
Solution"
Case 17-2
Features:

Problem 41.
Operator:
Solution"

Case 41- 3
Features:

Problem 47.
Operator:
Solution"
Case 47-2
Features:

Problem 53.
Operator:
Solution:
Case 53-3
Features:
Case 53-4
Features:
Case 53-2

Helmholtz, V2u 100u g
(cosh (10x)/cosh (10) + cosh (ay)/cosh (a))/2
(a =20)
Mild boundary layer in solution along x 1 and y 1.
(a =50)
More pronounced boundary layer in solution along x 1 and
y=l.

Poisson
xy(1 x)(1 y) exp (-a [(x -0.5)2 + (y b)2])
(a 50, b 0.117)
Solution has sharp peak at (0.5, 0.117).

Poisson
exp (-y2-[a(bx)3/(1 + (bx)3)]2) +sin (x-y +0.5)
(a =5, b =3)
Very mild boundary layer in solution near x 0.

Helmholtz, V2u au g
x(zr-x)/2-(4/zr)
x y.b {[sin ((2k 1)x) cosh ((2k 1)(y -r/2))]k=l

/[(2k 1)3 cosh ((2k 1)/2)]}
(a 10.0, b 25)
Solution has derivative singularities.

Poisson
(xy)/

(a =5)
Solution has singular third derivatives along x 0 and y 0.

Helmholtz, V2u au g
cos (by) +sin (b(x y))
(a 10, b 10)
Entire, oscillatory solution.
(a 30, b 10)
Entire, oscillatory solution.
(a 10, b zr)

Features" Entire, slowly varying solution.
Each problem was solved using five different discretizations: Q(h, /-, l, f),

Q(h, 1/2, 1, f), P(h, 1, 1, f), P(h, 1/2, 1, f), Q(h, 1, 1, f) and the standard five-point star. In
each case the resulting linear system of difference equations was solved by the
LINPACK symmetric band solver [10]. All codes tested are part of the March 1979
version of the ELLPACK system [26].

Each problem was run on a sequence of grids so that convergence behavior could
be studied. All calculations were performed on a CDC 6500 computer in single
precision arithmetic (14.3 decimal digits of precision). The programs used were written
in ANSI standard FORTRAN (1966) and were compiled using the Minnesota FORT-
RAN compiler (MNF). We summarize the results in three parts and in Figure 2 display
performance curves for each case. The graphs display the base 10 log of maximum error
on the grid divided by the maximum value of the solution on the grid versus the base
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Problem 17-2
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Time (sec.)
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Problem 53-4

IO--’T--’_T"
10-" lb lb 10

Time (see.)

FIG. 2. Graphs of max-error on grid divided by max-solution on grid versus time in seconds on a CDC
6500 (log-log scale). Each point represents the solution of a problem on a uniform grid. The fourteen
problems may be classified as those with smooth solutions (4-1, 53-2, 53-3, 53-4), those with smooth but
difficult to compute solutions (9-2, 9-3, 10-7, 17-2), and those with discontinuous low order derivatives (3-1,
3-2, 7-1, 8-2, 41-3, 47-2). Each problem is solved using six separate discretizations: C) 5-point
star; A HODIE P(h, 1, 1,f); + HODIE Q(h, 1, 1,f); HODIE P(h, 1/2, 1,f); HODIE
Q(h, 1/2,1, f)" V HODIE Q(h, 4, I, f).

10 log of the computation time in seconds. From these graphs we can easily assess which
programs are the most efficient, that is, for a given amount of computation time, which
code produces the smallest error. All problems fit in main memory and hence I/O time
is not a factor.
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Study 1. Performance for smooth problems. Problems 4 and 53 each have solutions
in C6 and hence the analysis of 4 applies. For each problem the relative behavior of
the HODIE methods was exactly as the error analysis indicated, with the optimal
method producing the smallest error. Q(h, , 1, f) proved to be a good sub-optimal
method while Q(h, 1, 1, f) was the least efficient in each case. The difference between
the good and poor choices of evaluation points was quite striking, consistently larger
than an order of magnitude. As expected, each HODIE discretization performed better
than the five-point star.

Study 2. Performance ]:or smooth but difficultproblems. Problems 9, 10 and 17 each
have solutions that are in C6, but also have troublesome behavior such as boundary
layers or sharp peaks. For such problems the error analysis of 4 still holds asymptoti-
cally, but one would expect the numerical methods to have trouble resolving the sharp
gradients in the solution using the coarse uniform grids we used. This is indeed the
case. In general, the relative efficiency of the eight methods tested is the same as in
Study 1, although the accuracy is lower for each case and the differences between
methods is much less as the difficulty of the problems increases.

Study 3. Performance for nonsmooth problems. The solutions of problems 3, 7, 8,
41, and 47 all possess singular or discontinuous derivatives of orders less than six and
hence the error analysis of 4 no longer applies. In the case of Poisson’s equation, the
HODIE methods tested here were also derived by Esch [13] using Fourier series
methods. Esch’s analysis indicates that the HODIE methods should still be effective
for these problems. In each case we find that the order of convergence reduces to that
of the five-point star; however, the absolute error of most of the HODIE methods is
better and hence they are more efficient. We also observe that the HODIE methods
fall into two groups of almost identical performance, the set Q(h,x/.3, 1,/),
Q(h, 1/2, 1, f), P(h, 1/2, 1, f) performing much better than P(h, 1, 1, f) and Q(h, 1, 1, f).
See the results for cases 3-1, 3-2 and 47-2, which have solutions with discontinuous
first, second and third derivatives, respectively.

We now rank the codes tested over the population of 14 cases based upon one
performance indicator: time required to attain 0.05 per cent error. Since few programs
attained this accuracy exactly on one of the grids employed, we fit a least squares line
through the data for each method and problem and obtain the required value by
interpolation. Table 2 gives the average rank and median time in seconds for each
method. Applying the Friedman, Kendall and Babington-Smith test to this data [16,
Ch. 7], we find that the average rank differences are significant with 95 per cent
certainty if greater than 2.02. Conclusions at 80, 90, 95, 97.5 and 99 per cent confidence
levels are given in Table 3.

TABLE 2
Time to attain 0.05 per cent accuracy--average

rankings of 6 methods for 14 problems.

Method name

O h, Ox/-. 3 1,f)
O(h, 1/2,1,f)
P(h, 1/2,1,f)
P(h, l, l,f)
Q(h, 1, 1,]’)
5-point star

Average rank

1.29
2.43
2.79
4.07
4.71
5.71

Median time
(sec.)

0.93
1.6
2.1
2.5
6.6

100.0
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TABLE 3
Ranking of methods based on time to achieve 0.05% error.

B O(h, x/-6-, 1, f)
E Q(h, 1/2, 1, f)
T P(h, 1/2, f)T
E P(h, 1, 1,f)
R Q(h, 1, 1, f)

WORSE
5-point star O(h, 1, 1, f) P(h, 1, 1, f) P(h, 1/2, 1, f)

99/4.42 99/3.42
99/3.28 97.5/2.28
99/2.92 90/1.92
80/1.64 /0.64

/1.00

99/2.78 /1.50
80/1.64 /0.36

/1.28

O(h, 1/2, 1, f)

/1.14

Entries are of the form top/bottom, where the top entry is the percent of confidence in the relative
rankings of the two methods based upon the Friedman, Kendall and Babington-Smith test and the bottom
entry is the average rank difference between the two methods. This difference is significant to 80%, 90%,
95%, 97.5% and 99% if greater than 1.62, 1.83, 2.02, 2.18 and 2.38 respectively.

7. Extensions to variable f. A simple extension of several discretizations of 3
to the case of variable f is obtained from the following theorem.

THEOREM 7.1. Let Kp and Ip be finite difference operators such that Ks IV2s for
all s n. Then the discretization

LpU =- Kpu + Ip [u Ipg

of the equation Lu =-V2u +fu =g with variable f is also exact on . Moreover, both
discretizations produce the same truncation and discretization errors ]’or all u Cn/l.

Proof. Let u s C"/1. Then the truncation error of Lpu Ipg is Iu-Lu
I(V2u+fu)-[Kpu+I(fu)]=IV2u-Ku which is the truncation error of the dis-
cretization Kpu IpVEu. Since the truncation errors are the same they are both exact
on ,. In fact, they both produce the same estimates U of u and hence they must both
have the same discretization errors. QED

COROLLARY 7.2. Let LP’lu IP’IVEu and L’u I’VZu denote the discretiz-
ations P(h, 1, O, O) and Q(h, 1, O, O) of the Poisson equation as given in Theorems 3.2
and 3.3. Then the discretizations

LP’au + IP’I(]’u) IP’ag
L’u +I’([u) I.Xg

of the equation V2u +fu g with variable [ have truncation errors O(h4) and order of
accuracy ]’our ]:or all u C6.

As in 3, a suitable change of variables yields discretizations of auxx + cuyy +
f(x, y)u g. Neither of these discretizations requires more evaluations of the right
side function g than usual low order methods.

Inspecting the coefficients of these discretizations it is easy to see that the resulting
system of linear equations is, for h sufficiently small and f-<0, weakly diagonally
dominant and an L-matrix. Unfortunately, unless ]" is constant, the matrix is not
symmetric, although it is an O(h 2) perturbation of one. It seems unlikely that a
symmetric matrix could be generated without a substantial increase in the number of
evaluation points.
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We present one numerical example. Consider the Dirichlet problem for the
equation V2u +fu =g on the unit square, where

/’(x, y)=-[100+cos (27rx) +sin (2zry)]

and

u 0.31[(x)(y) sin (Trx)(y2- y)(1/(1 + (4))- 0.53,

4’ 4[(x 0.5)2 + (y 0.5)2], (z) 5.4 cos (4rz).

The maximum value of the solution is about 3.3. The results obtained by solving this
problem using the discretizations P(h, 1, 1, f) and Q(h, 1, 1,/’) for various values of h
are given in Table 4. Note that the error analysis of 4 applies in this case and, as
predicted there, the method using evaluation point set P(h, 1, 1, f) has a smaller error
than the method using the set Q(h, 1, 1, ).

TABLE 4
Max error and observed convergence rate ]’or a Helmholtz problem with

variable f using discretizations P(h, 1, 1, f) and Q(h, 1, 1, f).

.2500

.1667

.1250

.1000

.O833

.0625

P(h, 1, 1,f)

max-error

7.1E-01
1.2E-01
3.4E-02
1.3E-02
7.1E-03
2.3E-03

rate

4.4
4.4
4.3
3.3
3.9

O(h, 1, 1, f)

max-error

8.8E-01
2.7E-01
9.6E-02
4.1E-02
2.6E-02
7.8E-03

rate

3.0
3.0
3.9
2.5
4.2

8. Extensions--sixth order methods. With the aid of the fourth order families of
3 it is easy to obtain discretizations of the Helmholtz equation on square computa-

tional cells (O 1) with order of accuracy six.
TIEOREM 8.1. The HODIE discretization LpU Ipg of the Dirichlet problem/:or

the equation V2u +fu g with constant f <-0 defined by

60L, 48L’1/2 + 8LP’ + 4L’
60I 48I’x/2 + 8IP’ + 4I’

has order of accuracy six for u C8.
Proof. The truncation error of this discretization is [48T’/2+8TP’+

4T’l]u/60. From Theorem 4.1 we see that this linear combination of truncation errors
is O(h6). Since the resulting discretization is a convex combination of discretizations
of positive type it also is this of type, and hence it has discretization error O(h 6) for
u C8. QED
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In stencil notation this scheme is written as

(6h2)-1

1 4 1

4 -20 4 U+(f/90)

1 4 1

1 1

1 82 1

1 1 1

U- h 2f:z U/20

=(.1/360/

1 4 1

48 48

4 148 4

48 48

1 4 1

g h2f2g/20,

where each box is of distance hi2 from its neighbors. In [18] the use of a sixth order
HODIE discretization of the Helmholtz problem due to R. E. Lynch is evaluated for
use with a fast direct equation solver. Although this discretization uses the same
auxiliary points as the one above (they are identical when f 0), the coefficients of the
scheme we present here are slightly simpler.

In general, a sixth order HODIE method requires 28 auxiliary points. The
discretization that we have just presented for the Helmholtz equation uses only 13 (that
is, 15 of the/’s are zero). We next show that this number can be reduced further. We
use the same superposition principle as in Theorem 8.1, looking for parameters to, Ix, v
such that

(8.1) toT’" + TP’’ O(h6).
where T’" and TP’’ are the truncation operators of the discretizations Q(h, Ix, 1, f)
and P(h, v, 1, f) respectively. The corresponding discretization,

[toL’" + LP."]U [toI
,. + IP,’]g

has order of accuracy six for u Ca while using only nine evaluation points. Applying
the truncation error expansions of Theorem 4.1 we find that (8.1) is satisfied if and only
if

2
/z 4(1 + to)/(15to), 2v 2(1 +to)/15.

The requirement that/x <-1 and v-< 1 imposes the restriction 4/11 _-< to =< 13/2. We
have shown the following.

THEOREM 8.2. The HODIE discretization LpU Ipg of the Helmholtz equation
on square computational cells (0 1) defined by

[toLO,. + LP.v]U [to/o.. + iP...]g.
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TABLE 5
Max error and observed convergence rate ]’or the solution of a

Helmholtz problem by four sixth order discretizations.

Thm 8.1

.2500

.1667

.1250

.1000

.0833

.0625

max-error rate

3.4E-05
2.8E-06 6.2
5.2E-07 5.9
1.4E-07 5.9
4.5E-08 6.2
8.1E-09 6.0

Thm 8.2, to 13/2

.25OO

.1667

.1250

.1000

.0833

.0625

max-error rate

5.7E-05
4.7E-06 6.2
8.7E-07 5.9
2.3E-07 6.0
7.6E-08 6.1
1.4E-08 5.9

Thm 8.2, to =4/11

max-error rate

6.1E-05
5.1E-06
9.5E-07
2.5E-07
8.3E-08
1.5E-08

6.1
5.8
6.1
6.1
6.0

Thm 8.2, to 2

max-error

4.4E-05
3.7E-06
6.8E-07
1.8E-07
6.0E-08
1.1E-08

rate

6.1
5.9
6.0
6.0
5.9

where/x2=4(1 +to)/(15to), u2= 2(1+to)/15, 4/11 _-<to _-< 13/2, each have order of
accuracy six for u C8.

Although these methods require only nine evaluation points, they do not appear
to be as efficient as that of Theorem 8.1, which requires only an average of two
evaluations of g per grid point. Table 5 displays the maximum error and observed
convergence rate for the solution of the problem V2u-5u=g, with u=
cos (2y)+sin (2(x- y)), using the discretization of Theorem 8.1 and three discretiz-
ations from the one-parameter family of Theorem 8.2.

9. Concluding remarks. We have used the HODIE approach with success in
solving a class of elliptic boundary value problems on rectangles with Dirichlet
boundary conditions, demonstrating that this technique provides an important tool for
obtaining highly accurate solutions to problems of varying difficulty with only modest
computational effort. A separate paper shows similar results in the presence of constant
coefficient mixed boundary conditions. The practical applicability of the HODIE
method in the general variable coefficient case has yet to be determined, since even
the formulation of the HODIE equations (2.2) at each point can be a formidable
computation.

Some nonlinear problems of the form vEu g(u) have been solved using HODIE
discretizations and fixed point iteration, although the straightforward applicability
of the method is restricted to the case where the evaluation points are also discretization
points. A similar restriction applies in the parabolic case.

Finally, the ability of the HODIE method to retain its high order accuracy on some
simple nonrectangular domains has been demonstrated, and further investigation of
this aspect of the method seems warranted.



HIGH ORDER DISCRETIZATIONS OF ELLIPTIC PROBLEMS 283

REFERENCES
[1] A. E. BERGER, J. M. SOLOMON, AND M. CIMENT, High order accurate tridiagonal difference methods

for diffusion convection equations, in Advances in Computer Methods for Partial Differential
Equations--III, R. Vichnevetsky and R. S. Stepleman, eds., IMACS, New Brunswick, NJ, 1979,
pp. 322-330.

[2] R. F. BOISVERT, High order discretizations of the Helmholtz problem that admit iterative solution
techniques, in Advances in Computer Methods for Partial Differential Equations--III,
R. Vichnevetsky and R. S. Stepleman, eds., IMACS, New Brunswick, NJ, 1979, pp. 1-7.

[3] R. F. BOISVERT, E. N. HOUSTIS AND J. R. RICE, A system for performance evaluation of partial
differential equations software, IEEE Trans. Soft. Eng., SE-5 (1979), pp. 418-425.

[4] R. F. BOISVERT, High Order Finite Difference Methods for Elliptic Boundary Value Problems, Doctoral
thesis, Purdue Univ., Indiana, 1979.

[5], High order compact difference formulas for elliptic problems with mixed boundary conditions,
in Advances in Computer Methods for Partial Differential EquationsmIV, IMACS, New
Brunswick, NJ, 1981.

[6] ., Attainable accuracy of compact discretizations of the Poisson equation, in Elliptic Problem
Solvers, M. Schultz, ed., Academic Press, New York, 1980.

[7] J. H. BRAMBLE AND B. E. HUBBARD, A theorem on error estimation for finite difference analogues
of the Dirichlet problem for elliptic equations, in Contributions to Differential Equations, vol. 2,
John Wiley, New York, 1963, pp. 319-340.

[8] M. CIMENT, S. H. LEVENTHAL AND B. C. WEINBERG, The operator compact implicit methods for
parabolic equations, J. Comp. Phys., 28 (1978), pp. 135-166.

[9] L. COLLATZ, The Numerical Treatment of Differential Equations, Springer-Verlag, Berlin, 1960.
[10] J. J. DONGARRA, J. R. BUNCH, C. B. MOLER AND G. W. STEWART, LINPACK User’s Guide,

Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1979.
[11] F. W. DORR, The direct solution of the discrete Poisson equation on a rectangle, SIAM Rev., 12 (1970),

pp. 248-263.
[12] T. M. EL-MISTIKAWY AND M. J. WERLE, Numerical method for boundary layers with blowing--the

exponential box scheme, AIAA J., 16 (1978), pp. 749-751.
[13] R. ESCH, High order difference approximations to Poisson’s equation, in Proceedings of a Harvard

Symposium on Digital Computers and their Application--Annals Comp. Lab. Harvard Univ., vol.
31, 1961, pp. 81-102.

[14] R. G. GRIMES, D. R. KINCAID AND D. M. YOUNG, ITPACK 2.0 User’s Guide, Center for Numerical
Analysis, Univ. Texas at Austin, 1979.

[15] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic Press, New York, 1980.
16] M. HOLLANDERAND D. A. WOLFE, Nonparametric Statistical Methods, John Wiley, New York, 1973.
[17] E. N. HOUSTIS AND T. S. PAPATHEODOROU, Comparison offast direct methods for elliptic problems,

in Advances in Computer Methods for Partial Differential Equations--II, R. Vichnevetsky, ed.,
IMACS, New Brunswick, NJ, 1977, pp. 46-52.

[18], A sixth order fast Helmholtz equation solver and its performance, in Advances in Computer
Methods for Partial Differential Equations--III, R. Vichnevetsky and R. S. Stepleman, eds.,
IMACS, New Brunswick, NJ, 1979, pp. 13-17.

[19], Algorithm FFT9: Fast solution of Helmholtz type partial differential equations, ACM Trans.
Math. Soft., 5 (1979), pp. 431-441.

[20] S. H. LEVENTHAL, Two dimensional OCI methods, in preparation.
[21] R. E. LYNCH, O(h6) accurate finite difference approximation to solutions of Poisson’s equation in three

variables, CSD-TR 230, Dept. of Comp. Sci., Purdue Univ., Indiana, April 19, 1977.
[22] R. E. LYNCH AND J. R. RICE, A high order difference method for differential equations, Math. Comp.,

34 (1980), pp. 333-372.
[23], High accuracy finite difference approximations to solutions of elliptic partial differential

equations, Proc. Natl. Acad. Sci., 75 (1978), pp. 2541-2544.
[24] ., The HODIE method and its performance for solving elliptic partial different.ial equations, n

Recent Advances in Numerical Analysis, C. deBoor and G. Golub, eds., Academic Press, New
York, 1978, pp. 143-175.

[25] J. R. RICE, The algorithm selection problem, in Advances in Computers, vol. 15, Rubicott and Yovits,
eds., Academic Press, New York, 1976, pp. 65-118.

[26], ELLPACK: A research tool for elliptic partial differential equations software, in Mathematical
Sottware--III, J. R. Rice, ed., Academic Press, New York, 1977, pp. 65-118.

[27],Methodology for the algorithm selection problem, in Proc. IFIP TC2.5 Working Conference on
Performance Evaluation of Numerical Software, L. D. Fosdick, ed., North-Holland, Amsterdam,
1979, pp. 301-307.



284 RONALD F. BOISVERT

[28] J. R. RICE, E. N. HOUSTIS AND W. R. DYKSEN, A population of linear, second order, elliptic partial
differential equations on rectangular domains, MRC Tech. Summary Rep. 2078-9, Mathematics
Research Center, Univ. of Wisconsin, Madison, 1980.

[29] J. B. ROSSER, Finite difference solutions of Poisson’s equation in rectangles of arbitrary shape, MRC
Tech. Summary Rep. 1404, Mathematics Research Center, Univ. of Wisconsin, Madison, 1974.

[30] D. M. YOUNG, Iterative Solutions of Large Linear Systems, Academic Press, New York, 1971.



SIAM J. SCI. STAT. COMPUT.
Vol. 2, No. 3, September 1981

1981 Society for Industrial and Applied Mathematics
0196-5204/81/0203-0003 $01.00/0

PROPERTIES OF A VORTEX STREET OF FINITE VORTICES*

P. G. SAFFMAN" AND J. C. SCHATZMAN*

Abstract. Steady solutions of the Euler equations are calculated for an infinite array of vortices,
consisting of two staggered parallel rows of identical vortices of finite area and uniform vorticity. These
models are similar to the "vortex streets" studied theoretically by yon Kfirmfin and others, except that here
vortices of finite rather than infinitesimal area are employed.

Key words. Kfirmfin vortex street, laminar wake

1. Introduction. For a certain range of Reynolds number, a regular pattern of
vortices is observed in the wake of a two-dimensional blunt body placed in a uniform
stream. In his classic work, von Kfirmfin modeled the problem with an infinite street of
point vortices (see Kfirmfin [4], [5], Kfirmfin and Rubach [6]). This approximate
approach has several limitations, among which are the infinite kinetic energy and
difficulty in fitting the model to flow past a body.

To improve the model, the vortices are herein allowed to be of finite area, but
uniform vorticity. An integrodifferential equation is then solved to obtain the steady
shapes of the vortices. This paper is a report of the first part of a study of the wake flow
problem, and describes only properties of the steady solutions for the infinite vortex
array. Subsequent papers will report on a stability analysis of the steady states, and on
relating this model to the wake flow problem.

2. Formulation. Consider an infinite array of uniform two-dimensional vortices,
consisting of one row of identical vortices of area A and strength -F with centroids at
positions x 0, +l, +21, +3l, ., y 0, and of a second row of identical vortices of area
A and strength +F with centroids at x d, d + l, d + 21, d + 31, , y -h. Let there be
superimposed a uniform flow Us in the x direction, at infinity, as in Fig. 1. It is assumed

Y

U

FIG. 1. The configuration of the fully infinite vortex street with arbitrary stagger.

that the flow is inviscid, incompressible, two-dimensional and, outside the vortices,
irrotational. This paper deals with steady flows of this kind, principally with d! -0.5
(for values other than 0 and 0.5 and for the symmetric periodic cases considered here,
the street does not move parallel to itself; see Rosenhead [9]).

* Received by the editors September 10, 1980, and in revised form February 18, 1981.
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The complex potential outside the vortices can be written (with obvious notation)

(2.1) w(z)
2zrA

log sin 7(z z’) dx’ dy log sin -[(z z dx’ dy + Uz,

where YI, X2 refer to the cross-sections of one vortex in the upper and lower rows,
respectively. By applying a Green’s theorem, the complex velocity can be written as a
line integral around the boundaries of the vortices:

(2.2) u + iv
2,rrA

log sin -[ (z z dz’- log sin 7 (z z’) dz’ + Us.

The requirement that the velocity field be tangent to the boundary of the vortices then
determines the steady shapes of the vortices, apart from the scaling, as a function of the
three dimensionless parameters d/ tz, h/ =- K, and A/ 2 =- a.

To simplify the calculations, the vortices in the two rows are assumed to have
identical shapes, differing only in position and orientation. There are two reasonable
choices of symmetry: invariance to reflection about the line y =-hi2 (the streamwise
axis centered between the two rows) and a suitable x translation, and similarly with an
additional reflection about x 0 (the vertical axis of one of the vortices). In both cases,
itis sufficient to satisfy (2.2) along the boundary of a vortex in either row. For vortices of
streamwise symmetry, these two cases are equivalent.

The second choice was picked, giving in place of (2.2)

(2.3)
F {Ix loglsin,r ,)

7r ’}u + iv
2,rA -[(z z sin -[(z + z tzl + iKl- 2e) dz + Us,

where 2 denotes the centroid of :Z1 and is for now assumed to be arbitrary. The first
symmetry could also have been considered, but since only streamwise symmetric
solutions were found using (2.3), this was not attempted.

Three quantities of interest are the propagation velocity Us of the array, the kinetic
energy of the fluid, and the momentum transport. They are needed to relate this model
to the wake flow problem. Specifically, the following quantities are defined:

li+_,,oft/2(u,2+v2) dxdy D,=
1 f+ioo )2(2.4) T - .,-l/Z - Im

.,-oo
(u’- iv dz,

where the contour integral in the expression for D’ is along any contour from y -oo to
y +co which does not pass through a vortex. Here T is the kinetic energy of the fluid
per unit length (streamwise), D’ is essentially the momentum flux of the fluid in the
streamwise direction with the contribution from the vortices themselves omitted, and
u’= u- Us is the x velocity relative to the free stream. Dimensionless values of these
quantities are defined as follows:

D’.(2.5) "s(a, .:) U. T(a, ) T, l’(a, )

3. Numerical method. Two successful numerical schemes were employed to
calculate the steady vortex shapes, one using Newton’s method in a straightforward
manner and the other using an ad hoe iterative scheme (Pierrehumbert and Widnall
[8]). Only solutions for vortices symmetric in the streamwise direction were computed.
The first numerical scheme allowed solutions lacking this symmetry, but none were
found (although an exhaustive search was not conducted). For purposes of the cal-
culations, X was taken to be the vortex with centroid at the origin.
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The condition that the vortex boundary be a streamline may be written"

(3.1) Im --s (U +iv) 0

where the derivative is taken along the boundary. The boundary of E is parameterized
using polar coordinates:

2; R e 0 6 0 < " < 2’rr,

(3.2) O(t) O0 + t 8 sin 2t, 0 =< 8 < 1/2,
N

R (t) 1/2ao + Y (aj cos jt + bj sin
=1

Here tgo, are parameters which permit limited adjustment of the scaling of 0 in
regions of high curvature of the boundary, so as to improve the rate of convergence of
the Fourier series for R.

Equation (3.1) is evaluated at uniformly spaced values of

2"rrj
(3.3) t t 2N + 1’ j 0, 1, 2, , 2N.

This gives 2N + 1 equations for the 2N + 2 unknowns ao, ", aN, bl, , bN, Us. An
additional equation comes from fixing the size of the vortex, e.g.

(3.4) R () fixed,

where q is some fixed angle. However, the resulting system is singular, because (3.1) is
invariant to a translation of z. The specification is completed by fixing the centroid of the
vortex at the origin, i.e.

1 Iv. Raeidtg=O"(3.5) + i =----
The resulting 2N + 4 real equations for the 2N + 2 unknowns are not independent and
the problem is handled by using the trick (Chen and Saffman [1]) of solving (3.4)
combined with the 2N + 1 equations which arise from the discretization of

(3.6) Im -s(U + iv) -+-fl(9). +f2(9))7 0,

where fl and f2 are more or less arbitrary nontrivial functions chosen to ensure that the
Jacobian of the system is nonzero for the solutions that satisfy (3.5). The choice of O and
2 respectively for fx and f2 was found to be satisfactory. Also, the $ appearing in (2.3)
was dropped to simplify the equations slightly.

If 0 then, as the limiting case of touching vortices (in each row) is approached,
the curvature of R with respect to t9 becomes large near t9 0 and t9 r, and hence
convergence of the series for R becomes slow. For large r, tg0 0, 6 0.4999 were
used, which concentrates mesh po.ints in these regions of large curvature and hence
smooths out R as a function of tg. This procedure works well for roughly > 0.36;
below this point, the vortices are too irregularly shaped for this simple technique to be
useful. To speed up some computations, tg0 =-r/2, 6 0 were used, and the vortices
were assumed to be streamwise symmetric. In this case, the Fourier series for R
contains only the cosine terms, and hence the number of unknowns is reduced.
Specifically, (3.6) is evaluated at the mesh points (3.3) for ] 1, 2,..., N, and the
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unknowns are ao, a t, ’, aN-t, Us; the remaining Fourier coefficients are taken to be
zero.

Integrals for velocity, centroid, and area were evaluated using the trapezoidal rule,
with care taken, in the former case, to preserve formal infinite order accuracy (see
appendix A). Initial guesses for Newton’s method were provided by using one Euler
step to advance from the previous converged solution, starting with small vortices and
gradually increasing the size by continuation in the parameter (3.4). However, con-
vergence was observed to be insensitive to the initial guess. Accuracy was ensured by
requiring that the highest order Fourier coefficients be sufficiently small, and by
checking that increasingN had sufficiently small effect on the results. Values ofN from
50 to 400 were found to be adequate for 5-digit precision in the final results. Each
iteration required roughly from 1 to 25 seconds using a CDC Cyber 203 computer (64
bit floating point).

The second numerical scheme is essentially a scalar approximation to Newton’s
method. Consider the variation of the stream-function ff along the boundary of the
vortex at some intermediary stage in the calculation. It is assumed that most of the
change in 4 on the boundary due to a perturbation of the boundary comes from the fact
that it is computed at a different point, rather than the fact that the flow field is changed.
Again, a polar coordinate representation for the boundary is employed:

(3.7) z(8) R (8) e i(a), 0(8) --+- sin 2,

but here streamwise symmetry of each vortex is assumed ab initio, and the unknowns
are taken to be Us and the values of R at

(3 8) 8 -r/-, i=0, 1,2,. .,N.

The iteration performed can be written

(3.9) R"+t) ") ’Ri -O .,.(,) j 1, 2, , N.
R,i

The numerator of the quotient is obtained by integration of the velocity using the
trapezoidal rule"

(n) --(n)

(3.10)

and 4’R =--04,/0R is of course a velocity component. The relaxation factor p is adjusted
empirically for optimum convergence (typically 0.5 _-<p _-< 2). Cycles of this iteration
alternate with an update of Us:

(3.11) U"+t) U(’)-p
YN Yo’

where V$ is obtained by integrating d$ around the half revolution from o to. The
velocity was calculated essentially as before (but see appendix A). As the final step of
the iteration, the vortex is shifted in the y direction to put the centroid at the origin, new
values of R being computed via interpolation.
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This method has apparent advantages over Newton’s method, namely, its simpli-
city and its speed per iteration (the cost is O(N2) per iteration versus O(N3) for
Newton’s method). However, highly unpredictable dependence on the initial guess and
poor convergence rate in some cases is the penalty. Convergence is geometric with
observed convergence factor ranging from about 0.15 for very small vortices to about
0.85 for large vortices. The method failed entirely to converge for very large vortices
with small x. Furthermore, more points are required for the same accuracy as compared
with the previous method. Instability is controlled by limiting the maximum value of p
and was not a difficulty. Values ofN ranging from 50 to 400 were found to be adequate.
These calculations were performed using a DECVAX11/780 computer (64 bit floating
point).

The energy can be obtained by a single contour integral over the vortex
boundary requiring O(N) operations (see appendix B). The momentum integral was
computed by applying the trapezoidal rule over a finite contour passing between two
neighboring vortices, and extending to regions where the flow is essentially a uniform
stream (the perturbation decays exponentially with y). Romberg integration was used
to obtain sufficient accuracy for this calculation.

4. Circular vortex approximation. The vortices of small area for the exact prob-
lem are nearly circular, and for precisely circular vortices the propagation velocity,
momentum transport and energy calculations can be done analytically. The former two
calculations lead to the same result as for point vortices (Goldstein [3]), since the flow
field outside a uniform circular vortex is identical to that of a point vortex of the same
circulation. For d I/2, I. ,

F rh F2 Fh
Us,(4.1) Us tanh ---, D’

2rl

and the energy can be evaluated exactly by integration of the kinetic energy density"

F2 12 1/2

_}
Note that the circular vortex model loses physical validity when the vortices overlap,
namely for a > min{(zr/4), (r/4)(x 2 + 1/4)}.

5. Results o| the calculations. Figures 2-5 show the calculated values of s, , and
/’ for the exact problem, accompanied by the corresponding results for the circular
vortex approximation. The curves were traced by using as continuation parameter the
quantity a which is the ratio of the x semi-axis of the vortices to I. As is evident in Fig. 5,
a solution of simultaneous maximum area and minimum energy exists for each x in
accordance with Kelvin’s variational principle for the steady states (Saffman and Szeto
[10]). This limit is a contour in the (, ct) plane, as depicted by curve 1 in Fig. 6. For
roughly > 0.36, further increase in a results in a decrease in area and increase in
energy, up to the point a 0.5, where the vortices in each row touch. This limiting case
is depicted by curve 2 in Fig. 6. Thus, between curves 1 and 2 there are two different
configurations for a given (, a). Presumably, the solution curves could be continued
beyond a 0.5 by considering two adjacent distorted vortex layers in place of discrete
vortices, but this was not done. Similar behavior has been observed for the linear vortex
array, which in fact corresponds to the limit x--, oo (Saffman and Szeto [10]). Quite

different behavior was observed for smaller than about 0.36. In this case, the
calculations indicate that the parameter a approaches a limiting value less than 0.5. To
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FIt3s. 2-4. Values of D, I’ and " for the fully infinite vortex array. Solid lines denote the calculated
values for the exact problem and dashed lines denote the circular vortex approximation.
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.15 .35

.,o . .’o .
FIG. 5. Expanded plot ofenergy fversus area a, showing the nonuniqueness, maximum area and minimum

energy.

check that this phenomenon was not dependent on the choice of the horizontal
semi-axis for continuation, the vertical semi-axes were also used as continuation
parameters. In all cases, the numerical evidence indicates that as the vortex size
increases, vortices in each row protrude between vortices in the other row, and the
solutions branches terminate when vortices in opposite rows approach and finally meet.
Here there is no turnaround in area or energy, but maximum area and minimum energy
occur at the limiting point of the solution branch. This behavior is similar to that
observed for a pair of counter-rotating vortices as studied by Pierrehumbert [7]. The
calculations for x < 0.36 and for large area were costly, and an accurate calculation of
the limiting case was not attempted. For this region, the corresponding segment of curve
1 in Fig. 6 should be regarded as a lower bound.

.5

(2) _-;

0 .I .2 .3 .4 .5 .6 .7

FIG. 6. A plot of the area versus spacing ratio K plane. Curve 1 denotes the maximum area for a given
spacing ratio. The segment corresponding to smaller shouM be regarded as a lower bound. Above curve 2, there
are two solutions for a given pair (a, ).
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Presumably, there exists a critical value of K which divides the regions of the two
types of limiting behavior. Due to cost limitations, it was not possible to determine
accurately this critical value. However, it is believed to lie within the range from 0.35 to
0.365.

A geometric observation of relevance is that for small areas and for K > 0.36485,
the vortices are longer in the streamwise direction than in the transverse, and the
converse for x less than this critical value. The exact dividing value for infinitesimal area
is the solution to cosh2 rx 3, which may be demonstrated using an elliptical vortex
approximation (as has been applied to the linear vortex array; see Sattman and Szeto
[10])..This is in good agreement with the numerically estimated large area critical value
of as discussed above, but there is no evidence to suggest that the large area critical
value is precisely the infinitesimal area critical value.

Figures 7-13 are plots showing the vortex shapes and the velocity fields. The
apparent good qualitative agreement with experimental observations (for example,

[\Nil!lt

FIG. 7. K 0.1, a 0.07948. FIG. 8. K 0.28055, a 0.03011.

FIG. 9. K =0.28055, a =0.09382. FIG. 10. =0.3, a =0.07484.
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FIG. 11. : =0.3, o =0.1409.

::::; ;::::::::::::::::::::::::::::

FIG. 12. K 0.3, a 0.2541.

FIG. 13. : 0.4, a 0.1188.

FIGS. 7-13. Plots of the vortex shapes and velocity field. Arrow length is proportional to the speed of the fluid at
midpoint.

Davies [2]) seems to provide some justification for the assumptions implicit in the
forthcoming application of this model to the wake behind bluff bodies and its stability.

Appendix A. Calculation o| the velocity. To evaluate the integrals in (2.2) it is
useful to write

(A1) I:, log
/.

’)
2"rr

sin -f (z z dz’ log sin - (z Z) dO,

where Z m z[,=o and dZ/d(R) can be determined from (3.2) as finite Fourier series in 0.
Hence, the integrand is 2,r-periodic, and the trapezoidal rule gives formally infinite
order accuracyprovided that the integrand has infinitely many derivatives, i.e., that z
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is not on the boundary of the vortex. Unfortunately, z is on the boundary for one of the
integrals when (3.6) is solved to obtain the vortex shapes.

To preserve accuracy in this case, the following trick is used (suggested by Dr. B.
Fornberg): r

,)sin -_ (z z
(A2) log sin --[(z z’) dz’ log

rr
dz’ + log (z z’) dz’.

-z’)

The first integral presents no difficulties, and the second can be calculated as follows:

’,1 I ’Ilog --[ (z z dz’ log--f(z-z’)dz log[z_z,[ dz

=-i J arg (z z’) dz’

,+2w
dZ

(A3) -i arg(z -Z) dO

dz f dZ
=-i [arg(z-Z)-(R)] d(R)-1/2i 0- dO

=-i [arg(z-Z)- -}Z dO-iz(),

where the arg function is taken so that the integrand is 2-periodic.
For the second numerical scheme, Ro was approximated by a fourth order

centered finite difference formula, and z then obtained from this. Hence, the integrals
were approximated to third order.

Appendix B. Energy calculation. The calculation of the kinetic energy for the
infinite vortex street proceeds nearly identically as for the infinite linear array (Saffman
and Szeto [10]). The result (with unit density) may be written

1F 200 F 00 1 F2 I(B1) T= R --On ds- X--On ds ---16 R4 dO.

Here (R, 0) are polar coordinates with origin at the centroid of the prime vortex, and X
is the integrand in (2.1) that gives the value of the stream function at the origin, after
combining the integrals; that is,

Ol x dA.

The functional form of depends on the symmetry presumed to exist between the two
rows of the street. The actual function that was used in these calculations is

sin z
(B3) X(z) log

sin (z d + ih)

Aekaowledgmeas. We acknowledge with gratitude the granting of time by
Control Data Corporation on the Cyber 203 computer at the CDC Service Center,
Arden Hills, Minnesota.
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SPECTRAL CALCULATIONS OF ONE-DIMENSIONAL
INVISCID COMPRESSIBLE FLOWS*

DAVID GOTTLIEB,5" LIVIU LUSTMAN AND STEVEN A. ORSZAG

Abstract. The extension of spectral methods to inviscid compressible flows is considered. Techniques
for high resolution treatment of shocks and contact discontinuities are introduced. Model problems that
demonstrate resolution of shocks and contact discontinuities over one effective grid interval are given.

Key words, spectral methods, shock waves, compressible flows, conservation laws, filtering

1. Introduction. Spectral methods [4] are based on representing the solution to
a problem as a truncated series of smooth functions of the independent variables. They
have been applied to the numerical simulation of a variety of viscous flows, including
the numerical simulation of turbulence [15] and the numerical simulation of transition
to turbulence [14] in incompressible fluids. It may seem that spectral methods are
limited to problems where Fourier series are appropriate in rectangular geometries and
spherical harmonic series are appropriate in spherical geometries. In these cases,
smooth solutions can be represented as rapidly converging spectral series, leading to
significant economies over discrete approximations that lead to finite difference
methods.

Spectral methods have now developed as a useful tool in areas far removed from
their original, and perhaps obvious, applications. Transform methods [10] have allowed
their application to problems with general nonlinear and nonconstant coefficients.
Orthogonal polynomial expansions [4] have expanded widely the kinds of boundary
conditions amenable to spectral treatment. New extensions of the fast Fourier
transform to nearly arbitrary Sturm-Liouville eigenfunction bases [11] may improve
the efficiency of spectral methods based on exotic function bases. A fast, general
iteration method has improved the efficiency of solving general spectral equations so
that spectral solution of problems in general complicated geometries requires little
more work than that required to solve the lowest-order finite-difference approximation
to the problem in the complex geometry [12].

One kind of problem has not yet received much attention for treatment by spectral
methods, namely, the approximation of discontinuous solutions by spectral methods.
Some early partial results were encouraging. It was shown [13] that continuous
solutions with discontinuous derivatives are well represented spectrally and that the
accuracy advantages of spectral methods over finite difference methods survive for such
solutions.

In the present paper, we provide an initial glimpse into the extension of spectral
methods to treat discontinuous solutions with shocks and contact discontinuities. The
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results are encouraging. It seems that spectral methods allow the resolution of shock
fronts and contact discontinuities by shock-capturing techniques with only one grid
interval across the discontinuity. Of course, spectral methods may also be used with
shock-fitting techniques to represent a perfectly sharp discontinuity.

2. Linear hyperbolic problems. It has been shown [9] that by pre- and post-
processing discontinuous data it is possible to achieve high accuracy with spectral
approximations to discontinuous solutions of linear problems.

A standard model problem [1] is given by the one-dimensional wave equation

(1)
u (x, t) u (x, t)

at Ox

with periodic boundary conditions on the interval 0-<_ x _<-2r. With nonsmooth initial
data u(x, O)= f(x), the solution u(x, t)- f(x t) (extended periodically) is nonsmooth
for all and a Fourier-spectral method should be expected to converge slowly.
Nevertheless, results obtained by pseudospectral Fourier solution of (1) on a uniform
grid are spectacular (at least in comparison with those obtained by such techniques as
the flux-corrected transport (FCT) algorithm [1]). Of course, both the spectral and
finite-difference results may be improved using adaptive mesh-refinement methods to
improve resolution near discontinuities. In Fig. 1, the solution to (1) is plotted at
t=4zr (after two full propagation periods over the spatial domain) with f(x)=
exp (-(x -’rr):Z/4Ax2), so the solution is a Gaussian with width 2Ax, where Ax 27r/64
is the effective grid resolution with 64 Fourier modes. The results plotted in Fig. 1
were obtained using a weak low-pass filter to pre- and post-process the results [see
(24) below].

1.5

o

.o.5f x 2

FIG. 1. A plot of the solution to the wave equation (1), with f(x) exp (x 71-)2/4Ax2) at 4zr, when
the initial pulse has been transported two lull periods. A Fourier spectral method with N 64 modes and a
weak low-pass filter was used. The plotted results are in excellent agreement with the exact solution f(x- t),
with a maximum pointwise error of about 2%.

In Fig. 2, similar plots are given for the solution to (1) when f(x) is a top-hat
function. Here a stronger post-processing [see (22) below] was necessary to remove
large oscillations, due to the Gibbs phenomenon, near the discontinuities. The par-
ticular post-processing does not appear to be too important for this problem; we used
a one-sided average in the neighborhood of rapid changes of the solution. The
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1.5

1.0

-0.5

FIG. 2. Same as Fig. 1, exceptf(x 1 (Ix zrl < 1/2zr), O({x r{ > 1/2zr). Here a one-sided average was used
as a post-filter to remove the oscillations. Again the plotted results at 4zr are in excellent agreement with the
exact solution f(x t).

motivation for this choice is similar to that of the FCT algorithm 1]. The results plotted
in Figs. 1 and 2 are obtained using 64 Fourier modes, corresponding to 64 collocation
points.

3. Compressible flow problems. In this section, we study the application of
spectral methods to one-dimensional compressible flow problems. In 7, we compare
the results with those obtained by more conventional finite-difference methods. The
one-dimensional Eulerian equations of motion in a finite shock tube are, in conserva-

(2)
dw 0
+F(w) 0, -1 =< x =< 1,
t x

(3) w (O, m, E)r, F(w) uw+ (0, p, pu) r,
where O is the mass density, m is the momentum density, E is the total energy density,
p is the pressure and u m/p is the velocity.

We assume the equation of state to be

(4) P (3’ 1)[E 1/2puZ];

we usually take 3’ 1.4, as is appropriate for a diatomic gas.
For simple shock tube problems, that involve only constant states separated by

shocks and contact discontinuities, there is no immediate need for high-order accurate
numerical methods. However, for more complicated flow problems, especially in higher
dimensions, where there may be interacting shocks, rarefaction waves or contact
discontinuities, as well as the interaction of shocks with boundary layers and interfaces,
it is necessary to have both high accuracy in the interior of the flow, in the boundary
layers and near the interfaces, and good representations of discontinuities. From this
point of view it seems appropriate to use the Chebyshev spectral method, since it
provides both high interior accuracy and very high resolution in the boundary layer
region [4].

We regard the classical simple shock tube problems as extremely severe tests of
spectral methods. After all, spectral methods are designed to give good resolution of
complicated flow structures distributed through the flow domain and, since they are

tion form,
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based on expansions in orthogonal functions, it would seem that isolated local jumps
at shocks and contact discontinuities would be most inhospitable for them. On the other
hand, it would seem that low-order finite-difference methods would be best for treating
shock discontinuities because of their localized character. One of the important
conclusions of this paper is that the accuracy (or rather, the resolution) advantages of
spectral methods hold up in the neighborhood of shock discontinuities, not just in
regions of smooth flows and boundary layers.

There are three ways to apply Chebyshev-spectral methods to these problems:
namely, collocation, Galerkin, and tau approximations [4]. We choose to use the
collocation (or pseudospectral) technique here for two reasons. First, collocation is the
easiest and most efficient method to apply for complicated problems. Also, since
collocation involves solving the equations in physical space rather than in transform
space with transforms used only to evaluate derivatives, boundary conditions are also
easier to apply.

Let us give a brief description of the collocation method. At each time step, we
evaluate the components of F in (2) at the points

(5)
x cos -, 0 <_-- } <_- N.

Next, the Chebyshev expansion coefficients a of F are found from

N

(6) F(x) E a.T. (x), 0 f N,

where T. (x) is the Chebyshev polynomial of degree n defined by T. (x) cos (n cos-x).
Since T(x)= cos (/n/N) it follows that

pn2
F(x,) cos 0 < n < N,(7) a,

Ng, p=0 N

where ?o ?u 2 and , 1 for 0 < n < N. Differentiating (6) gives

(8)
0F E a.T= E s.T.,

=0 =0

where

2 N

(9) s=-- E pap.
’n p=n+l

p+n odd

Equations (7)-(8) are implemented using the fast Fourier transform. In order to avoid
having to perform order N2 operations to evaluate (9), we observe that Sr =0,
sr-1 2NaN and sn (n _-< N-2) satisfies the recurrence relation

(10) tYnSn Sn+2+2(n + 1)an+l (n <_--N-2).

Using (10), only O(N) operations are necessary to obtain sn from an. Thus, using the
fast Fourier transform, evaluation of OF/Ox from F requires only order N log N
operations.

It should be noted that the collocation points xi are crowded in the neighborhood
of x 1 and x =-1. [xl and xr- are located at distances of "n’2/2N2 from x 1,-1,
respectively.] For N 128, there are 40 points located in the interval 0.9 < Ixl--< 1. This
high boundary resolution can be of great value when boundary layers or interfaces are
also present, but is wasteful for the simple test problems of the present paper.
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Next, we describe some time marching techniques. Let us denote the discrete
approximation for w at collocation point x/ and time step nat by w’, the discrete
approximation for F by F. Then we advance in time using the two-step (modified
Euler) method:

(11) w =w-
_

;,
OF" n+1/2

(12) w+ =w/- At(;)/
This scheme results in a linear stability condition of the form

(13) At=<
N max (I u I+ c)’

where c is the sound speed. This condition is very severe; indeed, using finite difference
methods with N points leads to stability restrictions like At- O(1/N). An alternative
approach is given in [5] and [12] that avoids the latter difficulty. The approach described
in [5] yields an unconditionally explicit stable scheme whereas that described in [12]
involves a very efficient implicit technique.

In this paper, however, we present results gotten by using (11), (12). Application
of the other time marching techniques will be given elsewhere.

4. Conservation properties of pseudospectral methods. In this section, we discuss
the conservation properties of pseudospectral methods applied to a nonlinear system
of equations. Consider

0w 0F(w)
w(x,O)=+(x)(14) Ot- 0---’

It is well known that, in general, no smooth solution can exist for all time. Instead, one
seeks a weak solution defined by the requirement that the integral relation

(15) f l (,w-xF)dx dt+ f (x, 0)(x) dx ---0
J

be specified for all smooth test vectors which vanish both for large and on the
boundary of the domain.

It can be shown that, as a result of the integral relation (15), the weak solution
must satisfy the Rankine-Hugoniot shock conditions. Assume now that (14) is spatially
discretized by the pseudospectral Fourier method (see [4]). By this we mean that
WN(X, t) is defined as the trigonometric interpolant of w(x, t) at the points x
r]/(N + 1)(] =0,.. ", 2N), FN(X, t), is defined as the interpolant of F at xi and one
solves the 2N / 1 vector equations

OWN,, OFN.(16) tx, t) --x-x(x/, t), ] 0,..., 2N.

This discretization should be used only if the boundary conditions of (14) are periodic
with period 2r.

Following Lax and Wendroff [8], we can prove
THEORE 1. Assume that as N--> oo, WN converges boundedly to some vector w.

Then w(x, t) is a weak solution of (14) with initial value
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Proof. Let 0(x, t) be a periodic test function and let 0n(x, t) be the interpolant of
0 at x xj. Let bv(X) be the interpolant of the initial condition b at the same points.

Multiplying (16) by ,v(Xj) and summing, one gets

w, ’ t)’,(w, (x.))Y’. ON(x, t)kx, t)= E ON(x,
j=O j=O 0X

We interpret now the sums on both sides of this result in terms of the trapezoidal
integration rule. Since @sws and are trigonometric polynomials of degree 2N,
the trapezoidal rule is exact (see [2]). Therefore, we obtain

(x, t) dx ,(x, t)(x, t) dx F(x, t) dx.

We integrate now with respect to to get

dx dt On(x, t)x, t)+ dt dx Fs(x, t)= 0.
Ox

Integrating the left-hand side by parts and taking into account that @n(x, t) 0, ,
we obtain

.n(x, 0)w(x, 0) dx- wn(x, t;x, t)- F(x, t) x, t) dx dt 0

or

0n(x, 0)N(x) dx + wc(x, t) (x, t)-Fv(X, t)x X, t) dx dt O.

Letting N oo completes the proof of the theorem.
Theorem 1 establishes the fact that the pseudospectral Fourier method applied to

problems with shocks yields the correct shock speed. The following argument [7] asserts
that this method can achieve resolution of shock discontinuities over one effective grid
interval. If the numerical approximation Uap to an exact shock solution Uex over the
interval 0--< x <2 is smeared over a distance h near a shock of strength U then

(Uex-- Uap)2 dx

where the constant obtains if the error Ux-U,p varies linearly from 0 to U over a
distance hi2. On the other hand, it is in principle possible that the first N Fourier
coefficients of Up in an N-term Fourier spectral calculation agree closely with those of
Ux. Since the nth Fourier coefficient a, of a shock solution on [0, 2] behaves
asymptotically as U/2n as n , it follows that

2o (Ux-Uap)2 dx2 E la, 2U2.
InlN/2 N

Therefore, h 6/N. Since the effective grid separation A is 2/N, it follows that,
optimally,

h5,
or better than one grid interval resolution.
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It is interesting to note that (16) implies that the components of ws are conserved.
In fact, summing up both sides of (16), one gets

---,xi, t)= N OF.
j=0 j=o ---x(x/’ t).

By the same argument as before, one can replace the sums by integrals to get

d- wN(x, t) dx ---x (X, t) dx O.

Therefore
27r 27r

For compressible flow problems, this shows that the mass, momentum, and energy are
conserved.

We would like now to demonstrate that the same conservation properties that
were established for the pseudospectral Fourier method hold also for the pseudospec-
tral Chebyshev method. In analogy to Theorem 1, we can prove

THEOREM 2. Let w and F be the pseudospectral Chebyshev approximation
described in (5)-(10) to (14). Then if WNConverges to w and is a smooth test function
such that #(-1, t)= #(1, t)= 0, #(x, oo)= 0 then w(x, t) is a weak solution of (14).

Proof. It is shown in [4, p. 15] that wr satisfies exactly the equation

(17) OWN OF+’(t)UN-I(X)P(x),
Ot Ox

where Uu- is the Chebyshev polynomial of the second kind so that Us-a(xi)= 0 for
/" 1, , N- 1 and P(x) is a polynomial of degree 1 that corresponds to the boundary
condition. More precisely, P(x) 1 x when the boundary data is prescribed at x 1,
and P(x) 1 + x when the boundary data is prescribed at x + 1. Suppose Ou-3 is the
interpolant of // x2 at the points x cos (Trff(N- 3))(i 0,. , N 3), then

f-- /-’---" CWN/ I_ 2 0FN
l--x N-3--I,X, t) /1--X

[ UN_P(X)N_341--X dx.

Since P(X)N-3(X) is a polynomial of degree N-2, the last integral at the right-hand
side of (18) vanishes.

The rest of the proof is similar to the proof of Theorem 1. Defining N
1-XN_3 and integrating, we obtain

o)a + o.

Since u , uniformly, and the derivatives of u converge similarly to the derivatives
of and since wu w, the proof is completed.

We are also able to show that the components of w are conserved. In fact, since

OW( OFN
OX
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for all interior points xj, one can use the Clenshaw-Curtiss quadrature formula [2] to get

N OWN(x, i
OF OFdx-F(1)-F(-1),

i=0

where

Therefore, (19) gives

4 N._(2 1 rr/’k
% =aN-’= 2.,

1 4k 2 cos,
k=O N

1
ao=oeN =N2_l

WNdX r,
dt

where tr represents the contribution from the boundaries. In the case of homogeneous
boundary conditions, where wr and OFN/OX both vanish at the boundaries so that
O" 0,

(20) / w,,(x,  )dx / w (x, 0)dx,.
d_ d-

demonstrating conservation.

5. Boundary conditions. Boundary conditions play a crucial role in the applica-
tion of spectral methods. Incorrect boundary treatment may give strong instabilities,
in contrast to finite difference methods in which instabilities due to boundaries usually
appear as relatively weak oscillations. On the other hand, as opposed to high-order
finite-difference methods, spectral methods normally do not require numerical boun-
dary conditions in addition to the physical boundary conditions required by the partial
differential equation.

For shock tube problems, we must specify all the flow variables at supersonic inflow
points, two flow variables at subsonic inflow points and one flow variable at subsonic
outflow points. If we overspecify or underspecify the boundary conditions, spectral
calculations are usually spectacularly unstable.

At subsonic outflow points, it is not satisfactory to specify arbitrarily any one of
the flow variables m, p, u or E. With arbitrary outflow boundary conditions, one can
obtain oscillations that originate at the boundary. The outflow boundary conditions
used here were obtained following the analysis given in [3]. We advance one time step
without imposing the boundary conditions and denote the calculated quantities by w.
We observe that if x + 1 is a subsonic outflow point, the incoming characteristic
quantity at x + 1 is v =p-(pc)u, whereas the outgoing characteristic quantities are
v2 p + (pc)u, v3 p c2p. Let us assume that one flow variable is given on the inflow
characteristic at x + 1. Then we solve the system

(21) v (v2), v3 (V3)c

for the two remaining flow variables at x 1. This procedure yields a stable scheme
with no oscillations emanating from the boundaries. In contrast to inflow-outflow
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boundaries whose treatment is quite systematic by the above procedure, material
boundaries evidently do require boundary conditions in addition to those required by
the mathematical theory of characteristic initial value problems. At characteristic
surfaces, like material boundaries, the specification of one flow variable, like u 0,
should suffice. However, we find that it is necessary to supplement this boundary
condition at only one characteristic boundary by one additional condition, like p given.
An analysis of these boundary conditions will be given elsewhere.

6. Smoothing and filtering. The approximation of discontinuous functions by
truncated Chebyshev polynomial expansions exhibits large oscillations near jumps and
has two point oscillations over the whole region [4]. Similar oscillations are observed
when approximating shock waves in inviscid flows. These oscillations may induce
instabilities in nonlinear problems since they can interact with the smooth part of the
solution and be amplified. It is essential for stability reasons either to eliminate
completely these oscillations or to control them in such a way that stability is not
affected.

Several methods to achieve stable computations have been investigated including
artificial viscosity, Shuman filtering and a new spectral filtering method to be described
below. We will report results obtained by the latter two methods.

Shuman filtering involves applying the filter

(22) w w +O+/:(w/ -w )+O-l/:(w w-..1).

The idea is to choose smoothing factors 0j that vanish in smooth parts of the solution
and become large only in the neighborhood of discontinuities. Following Harten and
Tal-Ezer [6], we choose

(23) Io/ +1 2(0/1 ) + (o o;-1)1

where 0 </3 < 1 is a suitable constant. Typically,/ 0.01 in our calculations.
A more intriguing kind of filtering is based on the following idea. If a low-pass

spectral filter just strong enough to remove those high frequency waves that lead to
numerical instabilities is applied to the inviscid compressible flow equations, the
spectral equations will give bad oscillations near shock fronts and other discontinuities.
However, as recently pointed out by Lax [7], these oscillatory solutions obtained by a
high-order method like a spectral method should contain enough information to be
able to reconstruct the proper nonoscillatory discontinuous solution by a post-
processing filter. The idea is that very weak filter.ng or damping to stabilize together
with a final "cosmetic" filter to present the results should be able to give great
improvements in resolution.

In practice, we use a low-pass filter for stabilizing purposes that is of the form

(24) f(k) { 1, k < ko,
e -(k-k)4, k > k0,

where k is a spectral (wavenumber) index, ko depends on the strength of the shock and
a is a constant of order 1. For typical fluid dynamical shocks, we choose k0 N, where
N is the maximum wavenumber in the spectral representation of the flow. We have
found that, for moderate shocks, the results are insensitive to the detailed form of (24).
However, it is important that f(k) be low-pass so f(k)= 1 for k <ko, because the
large-scales are treated very accurately (without phase error) by the spectral method.
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Finally, we explain how to post-process the numerical results to retrieve smoothed
results with localized discontinuities from the noisy, but stable, calculations. Our
method is to first determine the location of the discontinuities in the flow and then to
apply a Shuman filter to smooth the data on either side of the discontinuities (without
using data from the opposite side of the discontinuity in the smoothing process). The
key to the success of this procedure is the apparent ability of the spectral results to
preserve information on the precise location of discontinuities. Similar post-processing
methods do not work so well on finite-difference results because, in such calculations,
the shock position does not seem to be localized within one grid interval.

The results obtained by this procedure of pre- and post-processing the results are
not very sensitive to details of the procedure (e.g., a and k0 in (24)), provided the
filtration is strong enough to remove instabilities. At the present time, precise stability
bounds for a and ko are not known.

The location of discontinuities is found by an examination of the spectral
coefficients. One may assume that the smooth part of the solution is well represented
by the first few coefficients, while the leading behavior of the high-order coefficients is
generated by the discontinuities. As a rule of thumb, we examine the middle third of
the coefficients, since the highest third may be unreliable due to the stabilizing
smoothing.

The expansion coefficients ak should be fit by an expression of the form

s N 2N
(25) ak E BsAk (X), <. k < --,
where S is the number of shocks, Ak(X) is the spectral coefficient of a Heaviside
function with a jump at X and Bs, Xs are the intensities and locations, respectively, of
the various shocks.

In our case (Chebyshev collocation), it may be readily verified that

krr
sin -(L + 1/2)

1
0<k <N,AkXJ =N kzr

sin
2N

(26) Ao(X)
z+/2

1
A(X) sin r(L + 1/2),

with L an integer related to X by

(L + 1)Tr Lrr
(27) cos <X < cos.

N N

The solution of (25) for Bs, Xs proceeds as follows. First, we rewrite (25) in the form

kr def S

Na, sin--= dk ., B sin (ko),

with to (L(X)+ )(rr/N). Now note that a sequence bk --sin kto satisfies the identity

bk- q" bk+ def------ (lqb)k COS toby,.
2
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Therefore, the values os are simply related to the eigenvalues of the summation
operator l). They may be computed independently of Bs; the jump magnitudes are
found after the o are determined, by a least squares procedure.

We applied this algorithm to the test case of several Heaviside functions added to
a smooth background, such as e x. Shock locations are recovered exactly. They are
assigned to the nearest "midpoint" by (27). Witti N =64, the predicted shock
intensities are correct within a few percent for as many as 7 shocks. Moreover, when
more shocks are sought than are actually present, some os become imaginary, which
serves as a useful check.

When actual computational data are input to the "shock locator" program
described above, several jumps may be identified (of course, with the number of shocks
not specified beforehand). One may then proceed in different ways:

a) Smooth between the shock locations, using one-sided smoothing at the shocks.
b) Subtract the sum of Heaviside functions and smooth the result in physical space

(e.g., using a Shuman filter).
c) Subtract the coefficients of the Heaviside functions found, and smooth in the

coefficient space (e.g., by deleting high order coefficients).
Of these, method a) seems the most robust, as it needs no values for the actual shock
intensities. In computer experiments, all three methods perform comparably.
There are many fine adjustments that have to be made on the general algorithm

to obtain the best results. On wildly oscillatory data, one may obtain spurious shocks
due to large differences from "point to point"; sometimes, since several such oscilla-
tions are interpreted as shocks, the algorithm errs simply because S is too large. We
are investigating some ways of avoiding spurious shocks: namely, imposing an entropy
condition, ignoring shocks of low intensity, weighting the coefficients or data, and
iterating the smoothing procedure. There is not yet an approach which will solve all
hard problems, although reasonably good results are not hard to obtain.

7. Numerical results. The first model problem is a shock tube problem with a
diatomic gas (y 1.4), satisfying supersonic inflow at x =-1 and subsonic outflow at
x + 1. The initial conditions are

(28) P=01, p=01, u=u, -l<x-<l,

while the conditions applied at the inflow point x =-1 are

(29) P P2, p r(:, pl), u t7 (:, 01, Pl, ul),

where

(- 1) /-(30) r(’ptl=l+6----Pl’a(’Pl’Pl’ull=ul-5442+7:+6 01’
and p/pl is the strength of the resulting shock. With these initial and boundary
conditions, a pure shock propagates from x =-1 toward x + 1 at a speed

(31) v U + Pl+6p701
In Fig. 3, we plot the density structure of the resulting shock wave at 0.1

determined by the Chebyshev spectral method with N 64 polynomials, 5 in
(28)-(31), and pa =0a ux 1. The exact pressure jump across this shock wave is 5
and the density jump is 2.81818. The shock speed is 3.48997. In these calculations the
low-pass filter (24) is applied every time step and the final results are cosmetically
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4

0

a b c

o o b
-1 x -1

FIG. 3. A plot of the density p vs x ]:or the shock tube problem with initial conditions (28)-(29) with shock
strength 5 at 0.1, obtained using the pseudospectral method with N 64 Chebyshev polynomials. (a)
Results obtained applying the low-pass filter (24) at every time step. (b) Results obtained by applying the
post-processing Shuman filter (22) with constant Oj (except one-sided at the shock) to the results plotted in (a).
(c) Results obtained using a Shuman filter (22) with (23) [with no low-pass filter] at every time step.

filtered by a one-sided Shuman filter (22) with constant 0j, replaced by one-sided
smoothing at shocks. Also, we plot in Fig. 3 the results obtained using a localized
Shuman filter (22) with (23) at every time step. The latter result is similar to results
obtained using avon Neumann-Richtmyer artificial viscosity. Observe that the cos-
metically filtered results yield a one-point shock while the localized Shuman filter yields
a three-point shock. Similar results are obtained applying the localized Shuman filter
only every 100 steps or so.

8

7

6

5-

4-

3 ’-

2,,-

a

0
-1

c
I-----L

-1 x -1

FIG. 4. Same as Fig. 3, except : 104, 0.005.
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In Fig. 4, we give a similar plot of the density across a strong shock with : 104

at 0.005. Here the density jump is 5.9965. The results plotted in Figs. 3 and 4
demonstrate that our methods achieve high resolution shocks without significant
oscillations.

The second model problem is a shock tube problem with x + 1 as material
boundaries. The initial conditions at 0 are

(32)

x < 0,

0.55, x =0,
[0.1, x>O,

1.0, x < O,
0.5625, x O,
0.125, x>O,

while the boundary conditions are

(33)
u=0, x+/-l,
p=l, x=-l.

For moderate t, the solution to this problem consists of one shock, one contact
discontinuity and a rarefaction wave.

A variety of difference methods for solution of the flow that evolves from (32)-(33)
have been compared by Sod [16]. We have solved this problem using the spectral
filtering method with N 64 Chebyshev polynomials to represent the flow (in contrast
to Sod’s 100 point grid). The results are plotted in Fig. 5 at 0.3. Both the shock and
contact discontinuity are resolved over only one grid point. The overall solution is in

-1.0

2 1.5-"0

0 -0.5

.::::.
-1.0 0 1.0

4--2.(

0 1.0

3-

-1.0 -1.0 0 1.0

FIG. 5. Plots of the density, pressure, velocity, and energy at 0.3 ]’or the shock tube problem with

initial-boundary conditions (32)-(33). The Chebyshev spectral equations were truncated at N =64 poly-
nomials, and the spectral filtering method was applied to smooth the final results.
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good agreement with the exact solution to the problem. However, without the "cos-
metic" final filter, the results are highly oscillatory. Evidently, the highly oscillatory,
but stable, spectral solutions do contain enough information to reconstruct sharp
discontinuities.

Finally, we consider a problem in which we test for possible degrading of the
solution due to the nonlinear interaction between oscillations arising from interacting
shock waves. The initial conditions are

(34)

p=p=u=l, -0.9<x <-1,

p=2, p=r(2,1), u=t7(2,1,1,1), -l < x =< -0.9,
p 5, p r(2.5, r(2, 1)), u t7(2.5, r(2, 1), 2, t7(2, 1, 1, 1)),

These initial conditions correspond to a : 2.5 shock lying a distance 0.1 behind a

: 2 shock. The stronger shock overtakes the weaker shock and generates a single
coalesced shock and associated contact discontinuities and rarefaction wave. The
resulting density at 0.4 after shock coalescence is plotted in Fig. 6. Observe that the
cosmetic filtering method gives good resolution of both the shock and the contact

a b c

0
-1

-1- -1-

FI3.6. A plot of the density Ovs x for the two-shock problem with initial conditions (34). Here, a 2.5
shock lies initially a distance 0.1 behind a 2 shock. The density is plotted at 0.4 after shock coalescence.
(a) Low-pass filter (24) only. (b) Post-processing filter (22) with constant 0 (except one-sided at calculated
discontinuities) applied to the results of (a). (c) Shuman filter (22) with (23) at every time step.

discontinuity while the localized Shuman filtering method deteriorates in the neighbor-
hood of the contact.

In conclusion, we believe that the excellent results achieved by the present initial
investigation of spectral methods for highly compressible flows suggests that these
methods may prove useful for problems of practical interest. Such applications are now
underway.
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EXACT EXTENSION TO THE INFINITE DOMAIN FOR THE
VORTEX-IN-CELL METHOD*

BENOIT COUT AND A. LEONARD

Abstract. The three-dimensional vortex-in-cell method has been extended to allow for the numerical
simulation of plane layers of vortical fluid bounded on each side by a semi-infinite domain of unsteady
potential flow. Exact boundary conditions for Poisson’s equation for the velocity field were derived for the
computational domain enclosing all vorticity-containing fluid. A variational principle with quadratic spline
basis functions was used to derive the finite pentadiagonal systems that discretize the differential equations.

Key words, vortex-in-cell, variational principle, pentadiagonal, infinite domain, quadratic spline,
Poisson’s equation, incompressible fluid dynamics.

1. Introduction. In this paper, we present an extension of the three-dimensional
vortex-in-cell (VIC) method [2] that allows for the simulation of unbounded
incompressible flows with exact boundary conditions in the direction normal to the flow.
As before, the vorticity field is represented by a set of vortex filaments which move
under the influence of the velocity field that these filaments create. Consequently, sharp
gradients of vorticity can be tracked accurately and not diffused by numerical effects. To
treat a large number of filaments at a reasonable computer cost, the velocity field is not
calculated directly by the Biot-Savart law of interaction [4] but by creating a mesh
record of the vorticity field using best fit quadratic spline interpolation, then integrating
a Poisson’s equation to generate a mesh record of the velocity field. The VIC method
has been tested on fully periodic flows and no undesirable grid effects or numerical
instabilities were found [2]. Excellent comparisons were achieved with a spectral
method calculation of the inviscid Taylor-Green problem [1] and with a pure Lagran-
gian computation of the propagation of a periodic system of vortex rings [2]. In the
present work, Fourier transformation, which imposes periodic boundary conditions, is
used only in the streamwise and spanwise directions x and z. This leads to a system of
uncoupled second order ODE’s in the normal direction y for each Fourier component
of the velocity field. As discussed in the next section, discretization of each ODE
produces an infinite pentadiagonal system which is then transformed into an equivalent
finite pentadiagonal system. The solution is demonstrated to be invariant (within
roundott) to translations in the y-direction as long as the vorticity remains within the
computational domain.

2. Fundamentals. We assume an unbounded incompressible flow where the
vorticity field, t V , consists of a collection of vortex filaments with Gaussian
cross-section. This field at time may be represented as follows [2]:

(1) to(r) r, G(r-ri({)) - d:,

where : is a parameter which traces each filament along its length, ri(:) are the space
curves describing the filaments with circulations Fi, and G indicates the Gaussian profile
of the filaments. The summation is over individual vortex filaments. The governing

* Received by the editors October 22, 1980.
5" Institute for Plasma Research, Stanford University, Stanford, California 94305.
$ NASA-Ames Research Center, Moffett Field, California 94035.
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dynamic equation for the vorticity in these filaments is

Ot

where v is the kinematic viscosity and the velocity field u is determined kinematically
from

(2) V2u -V x to.

The motion of the vortex filaments is given by the velocity field averaged over the core
of the filaments, or

(3a) 0ri (:)- u(r/),
Ot

where

(3b) u(r)=fff G(r- r’)o(r’) dr’.

Note that the computed scales of motion are assumed to be essentially inviscid. Any
viscous or subgrid scale dissipation effects are modeled through the filter function G.

3. Vorticity distribution. As a first step towards solving Poisson’s equation (2) on a
fixed mesh we must create a mesh record of the vorticity field starting from the
Lagrangian representation (1). We follow the procedure of our previous paper [2] of
discretizing the vortex filaments and distributing the results onto the mesh.

Assume the vorticity field in each periodic domain is produced by a single filament
of circulation F whose space curve r(C) is approximated by piecewise linear sections
between m consecutive node points rl, r2, , r,. From (1) the approximate vorticity
field is then

(4) to(r)= P Y’. (ri-ri_l)1/2[O(r-rT)+G(r-r-)]
]=1

where ro rm and where we have assumed two-point Gauss-Legendre quadrature to
integrate over each linear section. The quadrature points are given by

r? =[(1 + )ri+(1 = f)r_].
Rather than using (4) to obtain the vorticity at each mesh point, we use quadratic

spline weighting to the nearest 27 grid points (3 in each direction). This procedure
improves computational efficiency and also insures conservation of to dV for each
linear section of the filament. On the other hand, this method of distributing vorticity
onto the mesh implicitly involves its own characteristic filter. Therefore a correction
must be applied to yield the effect of the desired filter function G(r). In the two spatial
directions, x and z, where Fourier transforms are used, this correction is derived as
follows 1]. In the x-direction, for example, the Fourier transform of the filter functions
in (4) produces the factors exp (ikxx’)r(kx), where t(kx), as mentioned earlier, is
taken to be a component of the spherically symmetric Gaussian function, that is
0(kx) exp (-kxEr2/4). The phase factor exp (ikxx.) can be approximated in terms of
quadratic splines as

N2(5) exp (ik,,x. ) S(kx) tl(X) exp (ikxl)
--Nx/2+

where Nx is the number of mesh points in x for each period and the tbl are the quadratic
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spline basis functions given by

1(3 x I)
2

(6) l(X) --’ -0, 3 x 1
2=h= 2’

1 x 1
--<--<l+-2=h= 2’

1 x 3

elsewhere.

The mesh spacing h 1. Note that the sum in (5) reduces to contributions from the three
mesh points nearest to x. The function S(kx) is chosen to minimize the rms error of the
approximation of all positions x between mesh points [1] and is found to be

3

(7a) S(kx) ( sin) /D(kx),
where

(7b) D(kx) 1 -sin2+ sin4 --Thus in k-space, the correction amounts to multiplication of the transformed vorticity
field by S(k)r(k) for each of the two periodic directions. Before the inverse trans-
formation is performed to determine the filament velocity u(r), we again multiply by
S(k)(k) for each periodic direction. The resulting factor t2(k) corresponds to the
filtering operations of (1) and (3b) and the consecutive multiplications by $(k) yield
respectively the best-fit quadratic spline coefficients of to and u at the mesh points rather
than the values of to and u.

In the y-direction normal to the flow, we use finite element approximations for to

and u in terms of quadratic spline functions, as we will describe in the next section. Thus
a quadrature point y’ yields a contribution to the vorticity field at y given by

(8) H(y, y’)- Z /(Y)6/(Y’).

Again we want to eliminate the effect of the filter H and impose G. Fourier trans-
formation of (8) over the infinite y’ domain gives

I_ H(y, y’) exp (ikyy’) dy’= Z 6,(y),(ky) exp (ikyZ),

where ((2/ky) sin (ky/2))3. Using the approximation (5), we find

I_ H(y, y’) exp (ikyy’) dy’
(k,)
S(k) exp (ikyy)

or

I_ H(y, y’) exp (iky(y’- y)) dy’ D(ky).

Therefore, consistent with the approximation (5), we find that H is approximately a
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difference kernel

H(y, y’) H(y y’),

whose Fourier transform is D(k,). The k-space representation of the correction for the
y-direction is then 2(ky)/D(ky). Finally, since

(9a) (2(ky)/D(k) l- k

for small kr, we can approximate this correction by the differential operator 1 +
b O/Oy, where

2

(9b) b =---.
4. Variational principle. Following the analysis of the previous section where we

use FFT’s in the streamwise x-direction and the spanwise z-direction, Poisson’s
equation (2) becomes

(lO) 02U(kx, y, kz)-cu(kx, y, kz)=- l+b Lto(kx, y, kz)
Oy2

where c k2x + k2z and L is the linear operator defined by

(11)

ex, ey, ez are the unit vectors and -= /----. Note also that, from now on, u ando stand for
the bi-transformed fields in x and z. Through a variational principle derivation, it is
easy to show that (10) is the necessary condition for the integral

to be a minimum. A finite element approximation of the solution u in the y-direction can
be obtained by using the piecewise quadratic spline functions that interpolate the fields
from and onto the mesh. The approximate vorticity and velocity fields are then of the
form

co(kx, y, kz)= Z COl(kx, kz)l(y),

II(kx, y, kz)= Z tlt(kx, kz)bl(y),

where l and Ill are the spline coefficients obtained at the mesh points yl and the b are
the basis functions defined by (6). Considering, for example, the x-component of the
fields, the stationary value to the functional I is given by
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leading to

Z u, \yj\Oyj+Clbi dy

Straightforward evaluation of the integrals yields the equation

a(ui+ + ui-z) + 13(ui+ + ui-) + yui

(l- b)(toi+l -O)i-x) + (4 +)(toi+2-toi-2)

where

ikz
120

[(66 120b)toy + (26 + 40b)(toyi+ + toyi-1) + (1 + 20b)(toyi+2 + toy 2)]

c 1 26c 1 66c
(13)

120 6 120 3’ 120
+1"

Similar equations for the two other components can be obtained bsing (11).
For practical purposes, one needs to solve the above pentadiagonal linear system in

a finite domain, thus requiring proper boundary treatment. In our case, with a
32 33 x 32 mesh and the use of FFT’s in the x- and z-direction, we assume no vorticity
outside our computational domain in the y-direction. Therefore the boundary condi-
tions necessary to solve the finite pentadiagonal system, given by (13) with -< 16, are
obtained by considering the homogeneous system of equations:

a(ui+2+ui-2)+(u++ui-)+yui=O for l/l> 16.

These equations admit Z-transform solutions of the form 0i. The p’s are functions of a,
/3 and 3’. Only the exponentially decaying solutions are kept to match the velocity at
infinity. Subsequent reduction of the infinite system to the finite computational system
of equations results in the modification of the four upper and four lower terms of the
pentadiagonal matrix with symmetry preserved. Finally, the system to be solved is o the
form

R.H.S.

The singular case where c 0 (kx kz 0) is treated by solving a reduced system and
then adding a component of the homogeneous solution to obtain the desired value of u
at y -, +oo or -oo. Solvability of the singular case is assured by the numerical equivalent
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of

--y dy ---y dy 0,

where R is the computational range in y.

5. Results. In order to test our approximation of the filter in the y-direction,
derived in 3, we form two layers of vorticity, each of opposite circulation, producing a
wake-like flow. Here each layer of vorticity is confined between two parallel planes and
the flow is uniform in the two directions x and z parallel to the planes. This distribution
of vorticity produces a velocity field that varies in the y-direction. After normalizing
with respect to the velocity difference across a layer of vorticity, we obtain a normalized
velocity profile U(y) with respect to y.

Figures 1, 2 and 3 display three comparisons of velocity profiles between our fully
periodic program (full line) and our new method where the y-direction is nonperiodic
(dash line). In each comparison, the filter applied in the y-direction in the periodic case
corresponds to a given value of b (see (gb)) for the real-space differential operator used
in the nonperiodic case. In Table 1, we describe the three cases. In Fig. 1, we simulate
the effect of the filter H alone; in Fig. 2, we assume no filtering and in Fig. 3, only G is
effectively acting. For the Gaussian filter G, r2= 12/2. All three figures show very
good agreement confirming the analysis of 3. Best agreement is obtained in the case of
Fig. 1 where the approximation given in (9a) is not required. In Fig. 2, with no filter, we
see what is approximately a truncated Fourier expansion of a ramp function velocity
distributionmthe truncation or cutoff due to the finite mesh width. From Fig. 3, it is

VELOCITY PROFILES

3DFFTW/D
XZFFTW/D

FIG. I. Velocity profile for the periodic case (full line) with Halone andfor the nonperiodic case (dash line)
with b O.
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VELOCITY PROFILES

3DFFTNOG
XZFFTNOG

UY)

FIG. 2. Velocity profile for the periodic case (full line) with no filter andfor the nonperiodic case (dash line)
with b -1/4.

VELOCITY PROFILES

U(Y)

FIG. 3. Velocity profile for the periodic case (full line) with G andfor the nonperiodic case (dash line) with
b cr2/2 --4.
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TABLE

Figures

Nonperiodic

(value of b)

2

2 4

Periodic

(filter in y-direction)

Max Difference

(% of U(y))

0.22

3.1

3.2

clear that for practical purposes, b could be adjusted empirically in order to improve the
fit. This could be accomplished by slightly altering the value of tr2.

To investigate the truncation error due to the mesh and test the nonperiodic
condition in the y-direction, we computed the velocity field due to an infinite row of
equidistant line vortices, each of strength F, whose (x,y)-coordinates are
(0, 0), (+a, 0), (+2a, 0),. . The exact solution for this system of singular vortices is
given by [3]:

-F sinh (2zry/a)
U

2a cosh (2zry/a)-cos (2rx/a)’
(14)

r sin (2"n’x/a
2a cosh (2,ry/a)-cos (2rx/a)"

These expressions yield u : 1/2F/a, v 0, for y --, +oo; as viewed from a distant point,
the row of vortices becomes equivalent to a vortex-sheet of uniform strength F/a. In our
calculation, we place a single filament at (0, 0): periodic conditions in x and z provide us
with the infinite row of equidistant vortices in z. Thus a 32; we set F 2 and b 0.
Figures 4 and 5 respectively display u and v in the fourth quadrant of the (x, y)-plane.

I0"I

10"2

U

I0"4

o -15.5

I"I--i._i_

lO
-s
0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5

FIG. 4. x-component of velocity, u, in the fourth quadrant of the (x, y)-ptane.
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10
"1

o ;-15.5

y=-2.5

I -0.5

-4

-5
10

0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5

FIG. 5. y-component of velocity, v, in the fourth quadrant of the (x, y)-plane.

The full lines indicate the exact solution given by (14). Close to the boundary of the
computational domain, at y =-15.5, the maximum error between theory and cal-
culations is 0.00089% for u and 0.015% for v. Closer to the filaments, the error
increases due to the fact that the mesh does not resolve the high-wavenumber
components of the exact solution for the singular filaments. To test the translation
invariance of the numerical solution, the vortex was moved in unit steps along the y-axis
to y 13. The results were exactly the same within roundoff (14 digits on a CDC 7600).
When we place the vortex at y 14, some discrepancies occur due to the fact that
vorticity is spread outside the computation domain by the spline functions (see (13)).

6. Summary and conclusions. The three-dimensional vortex-in-cell method has
been extended to allow for the simulation of infinite plane layers of vortical fluid
bounded on each side by a semi-infinite domain of unsteady potential flow. Exact
boundary conditions for the Poisson’s equation for the velocity field were derived for
the computational domain enclosing all vorticity-containing fluid.

Two new developments were required. First, the filtering implicit in the use of
distributing Lagrangian quantities onto a fixed mesh and interpolating back onto the
Lagrangian points was determined. A correction that cancels the effect of this filter and
imposes the desired filter could then be applied. Second, the solution to the Poisson’s
equation required the solutions to a set of infinite pentadiagonal linear systems. These
equations were solved analytically in the potential flow regions, allowing the derivation
of equivalent finite pentadiagonal systems.

The results concerning the inherent filtering of the distribution and interpolation
processes could be used to improve a number of particle-in-cell algorithms. In addition,
the derivation of exact boundary conditions for Poisson’s equation could be used more
generally, for example, whenever the source term (vorticity) vanishes in a semi-infinite
domain.
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MODIFIED DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS*
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Abstract. The experimental evidence indicates that the implementation of Newton’s method in the
numerical solution of systems of ordinary differential equations (ODE’s) y’ =[(t, y), y(a)= Yo, [a, b] by
implicit computational schemes may cause difficulties. This is especially true if (i) [(t, y) and/or [’(t, y) are
quickly varying in and/or y and (ii) a low degree of accuracy is required. Such difficulties may also arise
when diagonally implicit Runge-Kutta methods (DIRKM’s) are used in the situation described by (i) and
(ii). In this paper some modified DIRKM’s (MDIRKM’s) are derived. The use of MDIRKM’s is an attempt
to improve the performance of Newton’s method in the case where [ and [’y are quickly varying only in t.
The stability properties of the MDIRKM’s are studied. An error estimation technique for the new methods
is proposed. Some numerical examples are presented.

Key words, ordinary differential equations (ODE’s), numerical solution, Runge-Kutta methods,
diagonally implicit schemes, order of accuracy, quasi-Newton iterative process, Gaussian elimination, matrix
factorizations per step, starting approximations, absolute stability, AN-stability, LN-stability, error
estimation, embedding, computational work per step, solving linear systems of ODE’s

1. Introduction. Consider the initial value problem for first order systems of
ordinary differential equations (following Stetter [23] we shall call this problem IVP1):

(1.1) y’=f(t,y), y(a)=yo, t[a,b]cR, y(C(V+l)[a,b])S,
where s and p are positive integers.

Denote the true solution of the IVP1 by y(t). Consider the grid

(1.2) GN {t [a, b]/v 0(1)N, to a, t < t/l for v 0(1)N- 1, tN b}.

Very often numerical methods are used to obtain approximations y to y(t) at
the points of the grid .GN according to some error tolerance e. The methods introduced
by N0rsett [18] will be discussed in this paper. Following Alexander [1] we shall call
these methods diagonally implicit Runge-Kutta methods (DIRKM’s). An m-stage
DIRKM is based on the formulae

(1.3) k(h+)=f tn +cihn+, yn +hn+l 1)+yki(hn+ i= 1(1)m,

(1.4) y,+l y, + h,+ . pk(h,+l),
i=1

where h,+l tn+l tn is the stepsize used at step n + 1 (n 0(1)N- 1). The coefficients
of (1.3)-(1.4) are often written in the form
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It should be mentioned here that the following equalities hold for the DIRKM’s:

(1.6) a,= Y. Bq, (/3,,=3,), i= l(1)m,
j=l

but for the methods considered in this paper (1.6) will not be satisfied.
It should be emphasized that the functions k depend not only on the stepsize

but also on the independent variable t,. Therefore, it is more correct to use the
notation k(t, + ah,+). Abbreviating this notation to k(h,/), we want to underline
the important fact that if the first ] (j < m) functions (1.3) have already been computed
by some iterative procedure and if the stepsize has to be changed because the iterative
procedure fails to converge for k+l, then the first functions (1.3) have to be
recalculated.

The order of the method described by (1.3)-(1.4) or (1.5) can be defined as
follows. Let

(1.7) t,=x, h+=h, Ay=y(x+h)-y(x).

Assume that y, y(x). Consider

(1.8)
i=1

Use the Taylor expansion of q,.(h) (0 < 0 < 1)
P (hl.) ) ( hP+l )(1.9) q:,,,(h) =--o q (0)+

The order of the method is p when

(1.10) ()(0) 0 for ] 1(1)p, (+I)(0) # 0.

Assume now that a DIRKM of order p _>-1 is used in the numerical integration
of (1.1). In general, some iterative process must be used in the computation of
k(h), 1(1)m, because (1.3) are implicit. The quasi-Newton iterative process (QNIP)
is commonly used in the integration codes. The use of QNIP in the solution of (1.3)
is assumed from now on. Moreover, it is assumed that the simple Gaussian
elimination (GE) is applied in the decomposition (the LU factorization) of the matrix
I- hyf (see 2). It is well known that very often an old decomposition (obtained at
some previous step ], ] < n) can also be used at step n. Some problems where a new
decomposition is normally computed only when the stepsize is changed can be
constructed and arise in practice. Strategies which attempt to keep the old decomposi-
tion even after small changes in the stepsize have also been proposed, and it has been
verified that they work perfectly for some problems (1.1). Unfortunately, there also
arise situations where the old decomposition cannot be used during more than one
step. For some problems (especially when a low degree of accuracy is required) even
several decompositions per step are needed. This is true not only when DIRKM’s are
used, but also for many other implicit methods. Two examples are given below in
order to show that the average number of decompositions per step can be larger than
one.

In Table 1 the numerical results given in Enright et al. [13, p. 23] are used to
compute the average numbers of decompositions per steps for 5 codes and for 3 values
of the error tolerance. A wide range of test-problems is used in [13]. It should be
mentioned that the numerical results for some of the test-problems are not taken into
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TABLE
The average numbers of the decompositions per step for the 5 codes tested by

Enright et al. [13, p. 23]. The codes are based on backward differentiation formulae
(GEAR), the trapezoidal rule with extrapolation (TRAPEX), second derivative
multistep formulae (SDBASIC), a fully implicit Runge-Kutta method (IMPRK) and
a generalized Runge-Kutta technique (GENRK).

Tolerance

10-2

10-4

10-6

GEAR

0.27
0.15
0.09

SDBASIC

1.47
0.89
0.61

TRAPEX

1.72
1.00
0.55

IMPRK

6.67
0.84
0.23

GENRK

2.67
1.99
1.87

account in Table 1. This is so, for example, for problem D6. The code IMPRK
uses about 24.92 decompositions per step in the integration of D6 with e 10-2

(see [13, p. 46]).
The numerical results obtained by SIRKUS (a code based on DIRKM’s derived

in [18]) in the integration of two chemical problems [2], [15] are shown in Table 2.
Note that for the bigger problem (s 63) the average numbers of decompositions per
step are larger.

The results in Table 1 and Table 2 show that it is worthwhile attempting to answer
the following questions. When can an old decomposition be used several times? If
the problem is such that more than one decomposition per step will be needed when
a DIRKM is used, what can be done in order to improve the performance of the
DIRKM under consideration?

The following definitions will be useful in our efforts to answer the above questions.

TABLE 2
The average numbers of decompositions per

step found in the integration of two chemical prob-
lems by the code SIRKUS which is based on
DIRKM’s.

Tolerance

10-1

10-2

10-3

s=15

1.79
0.53
0.12

s =63

2.27
1.75
0.89

DEFINITION 1.1. The IVP1 has property $ if f(t, y) and f’(t, y) are slowly varying
in and y.

DEFINITION 1.2. The IVP1 has property $ if at least one of the functions f(t, y)
and f (t, y) is quickly varying in and both functions are slowly varying in y.

DEFINITION 1.3. The IVP1 has property $* if at least one of the functions f(t, y)
and f’y (t, y) is quickly varying in and at least one of these functions is quickly varying
in y.

In 2 a theorem proved by Kantorovich in 1956 (see [16], [17]) is modified for
the use of the QNIP in the solution of (1.3), when (1.1) is solved by a DIRKM. The
theorem indicates that the QNIP can cause difficulties in the numerical integration
when the IVP1 has not property $. Some modified DIRKM’s (MDIRKM’s) are derived
in 3. The stability properties of the MDIRKM’s are discussed in 4. An error
estimation technique is proposed in 5. Some applications of the MDIRKM’s for
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linear IVP’s 1 are given in 6. A brief discussion of the results is presented in the
last section.

2. On the use o| Newton’s method in connection with DIRKM’s. Assume that
some approximations k/(h), 1(1)m, to the solutions of (1.3) are available (only
in this section the notation k* (h) will be used for the solution of the ith system (1.3)).
Let (for 1(1)m and q =0, 1,...)

i-1

(2.1) f(r, rt) f’y(t,, +oe,h, y,, +h Y’. 8,iki(h)+hyk(h)).
/=1

Then the QNIP can be applied in the solution of (1.3) as follows:

(2.2) [I- hyf’y(r, r/)][kq+ (h)-k(h)]--P(k’(h)),

(2.3) P(k(h )) k(h f t, + ah, y, + h . flk(h + hyk(h

For the QNIP the following theorem holds.
THEOREM 2.1. Assume that

(2.4) r [-hv(, n)]-
exists. Let the following conditions be satisfied when ki (h) fi (where fi is the closed
sphere defined by Ilki(h) ko (h)ll<r. i- l(1)m)"

(2.5) [IFP(k (h))l[ ,, i= l(1)m

(2.6) I[I-FP’(k(h))ll-&, i= l(1)m;

(2.7) IIFn"(ki(h))ll<-_Ki, ki(h)fi, l(1)m.

Then we have"
(i) Existence and uniqueness, ff

gi’i-< 0.5, t < 1, l(1)m,(2.8) hi (1 ai

(1 x/1 2h-)(1 &)
(2.9) ri _>- l(1)m,

Ki

then for any i{1, 2,..., m} (1.3) has a solution k* (h) fi, which is unique if
(1 + x/i 2/7i)(1

(2.10) r < K
1(1)m.

(ii) Convergence. If (2.5)-(2.10) hold, then the QNIP is convergent (i.e., k i(h)
l), l(1)m, q =0, 1,. , and k(h)- k*(h) as q

(iii) Speed of convergence. If k(h) is found by the QNIP, then (for l(1)m and
q=O, 1,...)

(2.11) Ilk* (h)-kT(h)ll<-_ [1-(1-&)x/1-2gd+.
The above theorem is a modification of a result proved in [16] (see also [17,

Chap. XVIII]). Similar results can be found in [19] (where some conditions containing



MODIFIED DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS 325

the eigenvalues of f’y are used, see [19, p. 28]). We prefer the formulation given by
Kantorovich because it is very simple and allows us immediately to draw some
conclusions about the qualitative behavior of the QNIP. Indeed, note that (2.6)
measures the failure of F to be a good approximation to [P’(k(h))]-1, and (2.5)
measures the failure of k (h) to be a good starting approximation. When the problem
has property S both 8i and i will normally be small ( are small because the
extrapolation rules which are commonly used for obtaining starting approximations
k7 (h) work in general well in this case; 8 are small because F is a good approximation
to [P’(kT(h))]- even if it is calculated in a previous step <n). This means that the
strategy of keeping the old decomposition will work well when (1.1) has property S. If
the IVP1 has property q or property S* and if, in addition, e is large, then the above
strategy may cause difficulties. The results will be poorer when an attempt to keep
the old decomposition even after small changes of the stepsize is carried out (this
leads to a large number of rejected steps). If one of the above strategies is combined
with restrictions in the changes of the stepsize, then the algorithms so found may
perform very badly. However, the same algorithm can be efficient if the IVP1 has
property $ and/or if e is small. See, for example, the performance of IMPRK for
problem D6 [13, p. 46]. When e 10-2 the results are catastrophic" 5657 decomposi-
tions and 231 steps. When e 10-6 the results are much better, 69 decompositions
and 15 steps (note too that the computing time is reduced by a factor larger than 100).

The above analysis shows that N0rsett’s condition /3=/ for i= l(1)m [18]
normally ensures that at most one decomposition per step is needed if the problem
has property S. However, if the IVP1 has property g or S* and if e is large, then one
should be prepared for an integration process where more than one decomposition
per step will be needed even if the matrix I h/f’y (tn + a lh,yn + h’rk(h)) is decomposed
at the beginning of each step. This is very unfortunate if the system is large (the
computational cost per decomposition is O(s3) simple arithmetic operations, while

the computational cost of the QNIP without the decompositions is O(s2)). It should
also be pointed out that the transformation of (1.1) to autonomous form will not
change the situation. If the nonautonomous problem (1.1) has not property S, then
the transformed autonomous problem has not property $ either. Moreover, in many
practical problems has a special physical meaning, and it is desirable to keep as

independent variable. Finally, if the problem is linear, then the transformation to
autonomous form may cause some extra computations (because the transformed
problem will in general be nonlinear).

Theorem 2.1 and the above analysis indicate that an attempt to improve the
performance of the DIRKM’s in the case where the problem has not property S may
be worthwhile.

3. Modified diagonally implicit Runge-Kutta methods. Replace (1.6) with the
condition ci ,* for 1 (1)m. The method so found will be called a modified DIRKM
(MDIRKM) if it has the same order as the corresponding DIRKM (the DIRKM which
has the same coefficients %/3j and p but the coefficients a satisfy (1.6)). An answer
to the question whether MDIRKM’s can be constructed is given by the following
theorem.

THEOREM 3.1. MDIRKM’s of order up to 2 can be constructed.
Proof. (a) Order 2 is attainable. Consider (1.10). It is obvious that 0,,(0)= 0 is

satisfied. Since (see (1.3)-(1.10))
d(Ay)

(3.1) (Ay)’
dh

y’(x + h) =f(x + h, y(x + h)),
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(3.2)

dki(h)
dh ( )y*f’t x + y’h, y,, + h Y’. flilk(h)

1=1

(3.3) (dk,(h)q.(h) =f(x + h, y(x + h))- Y piki(h)-h . pi
i=1 i=1 \ dh

it is clear that

(3.4) 0’(0)= 1-.= p f(x, y(x)),

and therefore q,, (0) 0 implies

(3.5) E P, 1.
i=1

(3.6)

(3.7)

From

d2(Ay)
(Ay)"= --g =f(x +h, y(x +h))+fy(x +h, y(x +h))f(x +h, y(x +h)),

{d2ki(h)), (dki(h)’-h,Y’,Po(h)=(Ay)"-2 P\ dh ] \ dh 2

it follows that

( ,1 ) ( 1 i 1)(3.8) qL(0)= 1-2y* p f’t(x, y(x))+ 1-2 Pi , f’y(x, y(x))f(x, y(x)),
i= /=1

and therefore q 2,(0)= 0 implies

i--1

(3.9) y*=0.5 and p =0.5-.
i=2 1=1

It is readily seen that the coecients of the method can be chosen so that (3.5)
and (3.9) are satisfied (and the order is 2). If, for example, m 2, then

0.5

(3.10) 0.5

can easily be found.

1-p p

(b) No MDIRKM of order 3 can be constructed. This is trivial; no quadrature
formula based on one point can be of order higher than 2.

Assume that the IVP1 has property S and that e is large. For all ai y*, then
one could expect ]v’y (r, rt) to be a good approximation to all matrices in the right-hand
side of (2.1) and the QNIP will perform well at all stages during step n. If (1.6) are
satisfied the above statements will often not hold. This shows that the MDIRKM’s
are introduced in an attempt to improve the performance of the QNIP when the IVP1
has property S. However, if the IVP1 is linear, then the MDIRKM’s are efficient not
only when the problem has property $ but also when the problem has property S*,
see 6.
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4. Stability properties of the MDIRKM’s. Let q be a complex constant. Assume
that Re q -< 0 and consider the model-equation

(4.1) y’=qy, ys.
It is well known (see, e.g., [5]) that the use of any RK method in the solution

of (4.1) leads to

(4.2) y,+ R (z)y,, (n 1(1)N),

where (see (1.5))

(4.3) R(z)=l+zpT(I-zB)-le, z=h,+lq, e=(1,1,’",1)r.
The method is A-stable [12] if

(4.4) IR (z)] <- 1 ’q Re (z) -< 0.

Since (4.3) does not depend on c, the following result is clear.
TI-IEOREM 4.1. An MDIRKM is A-stable ifand only if the corresponding DIRKM

is A-stable.
If, for example, m 2, then it is well known that for the DIRKM’s

(4.5) R (z) [1 + (1 2y)z +(yZ-zy+o.5)zZ]/(1-yz)z

and the methods are A-stable if y_>-0.25. Theorem 4.1 shows that this result holds
also for the corresponding MDIRKM’s (with m 2).

It has already been mentioned that the MDIRKM’s are efficient in the solution
of linear systems (1.1), i.e., when

(4.6) f(t, y) A(t)y + b(t).

Therefore, it seems to be useful to investigate the AN-stability of the MDIRKM’s.
The notion AN-stability was introduced by Burrage and Butcher in [5]. Let q(t) be
a continuous complex-valued function with Re q(t)<-0 for t[a,b]. Consider the
nonautonomous model-equation

(4.7) y’ q(t)y, q(t)R.

The implementation of any RK method to (4.7) leads to

(4.8) y,+l=K(Z)y,, Z=diag(zx, z2,.’.,z,), zi=h,+q(tn+aihn+l), i=l(1)m,

where (see (1.5) again)

(4.9) K(Z) 1 +pT"Z(I-BZ)-Xe, e (1, 1, , 1)a.
The method is said to be AN-stable if

(4.10) IK(Z)]-<_I V Re (zi) <= 0, i=l(1)m.

While AN-stability implies A-stability, the converse statement is, in general, not
true (see the example given in [5, p. 49]). However, for the MDIRKM’s the following
result holds.

THEOREM 4.2. AN-stability is equivalent to A-stability for the MDIRKM’s.
A remarkably simple criterion for AN-stability has been given by Burrage and

Butcher [5]. This criterion can be described as follows. Consider the symmetric matrix
M whose elements are rni Pii +piii-PiPi. For all pi _->0, if M is a semipositive
definite matrix, then the RK method is said to be algebraically stable.
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THEOREM 4.3 (Burrage and Butcher [5, p. 50]. An algebraically stable RK
method is AN-stable and, ira 1, , a, are distinct, it conversely holds that an AN-stable
RK method is algebraically stable.

The use of Theorem 4.3 to the 2-stage DIRKM’s and the corresponding
MDIRKM’s gives

THEOREM 4.4. The 2-stage MDIRKM described by (3.10) and the corresponding
DIRKM are algebraically stable if p 0.5 and 3/>- 0.25.

Proof. Matrix M is semipositive definite if (i) det (M)_-> 0, (ii) ml1--> 0 and (iii)
m22 0. Condition (i) leads after straightforward computations to -4(0.5 3/)2(0.5
p)2 _< 0 and (since 3’ 0.5 produces a 1-stage method) p 0.5. Withp 0.5, ml1 m22
3’-0.25 and (ii) and (iii) lead to y >_-0.25.

Theorem 4.3 and Theorem 4.4 give immediately the following result.
COROLLARY 4.1. The 2-stage DIRKM’s are AN-stable if p 0.5 and y 2>_0.25.

By the use of Theorem 4.1 and the established fact about the A-stability of the
2-stage DIRKM’s the following result can easily be obtained.

COROLLARY 4.2. The 2-stage MDIRKM’s are AN-stable if 3’ >-- 0.25.
Corollary 4.1 and Corollary 4.2 show that if p # 0.5 and y >_-0.25 then the 2-stage

MDIRKM is AN-stable, while the corresponding DIRKM is only A-stable.
A situation where the use of an A-stable method in the solution of nonautonomous

equations causes instability is given below. Consider the equation

(4.11) y’=A sin2 (r--3.430251901)y, A <0, c>0.

Assume that the 2-stage DIRKM given by

1 x//2 1
(4.12) 27x//2-18 144- 19 1 x//2

(53 5x/)/62 (9 + 5x/)/62
is applied in the solution of (4.11) with a constant stepsize h--c. A simple analysis
shows that (4.12) will be unstable if -Ac > 37.1. The numerical results obtained for
A -10,000, h c 0.1, y(0) 1,000 are given in Table 3. The results obtained with
two other methods (which are AN-stable) are also given in Table 3. These methods are:

1 1 1 x//2 1 x//2
(4.13) 0 -1 1 x//2 x/- 1 1-x//2

0.5 0.5 0.5 0.5

TABLE 3
The errors found in the numerical integration of (4.11) (El is the error found

by (4.12), E2 and E3 are the errors for the first and the second method (4.13),
respectively).

1.0
2.0
3.0
4.0
5.0

Number of steps

10
20
30
40
50

E1

5.95E+5
3.54E+7
2.11E+9
1.25E + 11
7.45E + 12

E2

5.93E 0
3.52.E- 3
2.09E-6
1.24E-9
7.35E- 13

E3

6.11E-17
3.73E-37
2.28E-57
3.26E-66
0.0
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For the 2-stage DIRKM’s (when implemented in the solution of (4.7)),

(4.14) K(Z)
1 + (1 p 3,)z + (P 3,)z2 + (3,2 2 3, + 0.5)z

(1 3,z)(,1

where (when a constant stepsize is used)

(4.15) z hq(t,- ah), 1, 2.

For the method (4.12), 3,2-23,+0.5 =0 and the choice h =c gives z20 at each
step. Therefore it must be emphasized that the above example is very artificially
created. Nevertheless, the example shows that the use of AN-stable methods in
the solution of nonautonomous problems should be preferred; see also the second
experiment in 6.

Compare the results for the two methods (4.13). The second method follows the
behavior of the solution much better. This shows that it seems to be useful to introduce
LN-stability (L-stability for nonautonomous problems).

DEFINITION 4.1. The notation [ZI-* will be used to express the fact that Iz, l-
for all i.

DEFINITION 4.2. The RK method is said to be LN-stable if it is AN-stable and
if [Z[ oo implies K(Z) 0.

The relations between the different kinds of stability for the RK methods when
they are applied to (4.1) and (4.7) are seen in Fig. 4.1.

L-stability :ff A-stability

LN-stability =:> AN-stability

FIG. 4.1

The following corollaries can be formulated and proved.
COROLLARY 4.3. For the MDIRKM’s LN-stability and L-stability are equivalent.
COROLLARY 4.4. The 2-stage DIRKM’s are LN-stable if p =0.5 and 3,

1+ x//2.
COROLLARY 4.5. The 2-stage MDIRKM’s are LN-stable if 3, 1 +x//2.
As an example let us note that the MDIRKM corresponding to (4.12) is LN-stable,

while (4.12) is not.
The results in this section show that not only a better performance of the QNIP

for problems which have property S can be expected when the MDIRKM’s are used
(see 3), but also, the classes of AN-stable and LN-stable 2-stage MDIRKM’s are
considerably larger than the classes of AN-stable and LN-stable 2-stage DIRKM’s.

LN-stable implicit Runge-Kutta methods are also considered by Burrage [4].
This concept is extended for a wider class of methods in [6].

5. Error estimation technique. A device which can be used to control the local
truncation error during the integration process performed by some 2-stage MDIRKM’s
of order 2 will be described in this section. The device is based on "embedding" which
was first used by Fehlberg [14] for explicit RK methods. The following statements,
which are well known and only slightly modified for our methods, are needed before
the formulation of the main result in this section (Theorem 5.2).

DEFINITION 5.1. Consider the problem defined by

(5.1) y’ =f(t, y), y(t,,) yn.
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Assume that an m-stage RK method (not necessarily an MDIRK or a DIRKM)
of order p is used to find yn/l. Then

(5.2) p (19+1) h=h.+xT,+ (Om (O)/(p + 1)!)h p+I,
will be called the principal part of the local truncation error.

THEOREM 5.1. Assume that y,/l is computed by a 2-stage MDIRKM of order
2. Consider another Runge-Kutta method of order 3 defined as follows: kl(h) and
k2(h are the vectors computed by the MDIRKM under consideration,

( )(5.3) k,(h)=f tn+,h, y,+h Y. fl,ki(h) i=3(1)m,
j=l

(5.4) + y, + h E iki(h).
i=1

Then if the terms which contain h4 are neglected in (1.9) the principal part of the
local truncation error can be written in the following way"

(5.5)
2

T,+I =yn+l-y.+=h Y, (,-p,)k,(h)+h E
i=1 i=3

The problem is how to choose the auxiliary method (5.3)-(5.4). It is not possible
to construct an MDIRKM of order 3 (see 3). It is not desirable to use implicit
formulae in (5.3) (this may cause extra decompositions). Therefore the only choice
which will ensure that the computational cost of the error estimator formulae (5.3)-
(5.4) is O(s2) is ii =0 for 3(1)m and j-> i. By this choice the following theorem
can be proved.

THEOREM 5.2. The smallest number m which allows us to construct an error
estimator (5.3)-(5.4) with explicit formulae (5.3)for a 2-stage MDIRKM is 4.

Proof. The method (5.4) will be of order 3 if its coefficients satisfy the
following conditions.

(5.6) X /, =.1,
i=1

(5.7) X ,, 0.5,
i=1

(5.8) X t, X/0 =0.5,

(5.9) y, 2 1
Pi

i=1 3’

1
(5.10)

i=1

i=

1
(5.12)

i=1 1=1 v=l

(5.3) E #, #
i= 3"
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(a) Let us choose m 3. Then it is easily seen that the system (5.6)-(5.13) has
no solution (consider (5.6), (5.7) and (5.9) and take into account that (3.5) and (3.9)
must also be satisfied).

(b) Let us choose m 4. Assume that y, 21, 31, 32, Or3 and O4 are chosen so
that (5.13) is satisfied. Then the solution of (5.6)-(5.12) can be found (for/321 0,
a3 a4, a3 0.5 and a4 0.5) by the use of the following formulae (and the notation
ci (2a4-1)/(2a3-1), f131 +32--3", ’= 1--6y+63"2)"

(5.15)

(5.16)

(5.17)

(5.8)

(5.19)

42 {(4 ce3)[/(2c4 i) + 3’] + ff (832/321 -/3") + [c (04 3)

43 --a (a4-- Ce3),

41 O4--O3--42--43 -- 31-1- 32,4 61-(204 1)(O4 O3),

P -aP4,

2 [0.5 3" --(P3 -I-4) 4(0t4 O3)]/21,

(5.20) /1 1 --/= --/3 --/4.

Straightforward calculations show that (5.13) can be rewritten as

(5.21) 2fl(2a3-1-/ +f121)=(2a3-1){[l+-(3-63")21](2a4-1)-a4+a3+21}.

It is easy to see that (5.21) can be satisfied (for example by the choice of/32 0,
31 3", a3 a4 21-- [1+ / (3 6T)/321](2a4 --1)).

Consider now the integration method as a combination of a basic 2-stage
MDIRKM of order 2 and a 4-stage error estimator (5.3)-(5.4) of order 3. If (1.1) is
linear, then the requirement (5.13) is not necessary (this requirement appears when
the coefficient in the term containing f is equated to zero). In this case the six
parameters 3",/21,/331,/3z, a3 and a4 could be used in order to construct an integration
method which is optimal with regard to some of the following requirements: accuracy,
stability, computational work per step and simple implementation. If (1.1) is not linear
then at least one of the parameters must be used in order to satisfy (5.13). The other
parameters can again be used in an attempt to optimize the integration method.

6. Application of MDIRKM’s in the solution of linear systems. Assume that" (i)
the IVP1 is linear, (ii) the IVP1 has property S or S*, (iii) e is large. In this section we
shall show that in this situation the QNIP can successfully be replaced by the use of
GE and, moreover, if the use of GE is assumed, then it is preferable to apply
MDIRKM’s. Some numerical results obtained by Y12NBF will be used to illustrate
our conclusions. Therefore, before the discussion, a brief description of this code is
needed (some more details are given in [21]). The integration method implemented
in the code is given by

(6.1)

0.5
0.5

0

1

Pi

1 -v/2
.v-I 1-4/2

0 0
-vr+ 1 /-1

0

1 0

O.5 O.5

3 3
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By this choice of the parameters y, 21, 31, 32, 33 and 34, an attempt to construct
an integration scheme which is optimal with regard to the computational work per
step and to the simplicity of implementation has been carried out. Since the QNIP is
replaced by GE, the most expensive parts of the computational work per successful
step are one decomposition, two function calls and two back substitutions. The
computational work needed to obtain the coefficient matrix for kl(i) and k2(i) is
reduced from O(s2) to O(4s) arithmetic operations by the use of matrix A
(1-x/-/2)-lh-IA instead of A=I-h(1-x/-/2)A(t,,+h/2). Vector k3(h) is
computed before the computation of kl(h) and k2(h). In this way it is not necessary
to recompute k3(h) when the step is rejected and has to be repeated with a smaller
stepsize. The step is not rejected immediately after obtaining I[3,+1- y+l[z > e. First
the code will attempt to perform extrapolation as follows. Vectors yn+2 and yn+2 are
calculated using starting values y,/x and y, and stepsizes h and 2h, respectively. Only
the basic method (the 2-stage MDIRKM) is used in these calculations. The approxima-
tion Yn+2 is accepted if Ily+2 y*+2112/7--<e and in the next several steps only this
extrapolation rule is used. If the extrapolation rule fails, then the stepsize h,+ h is
reduced and yn/l is recomputed by (6.1). During the use of the extrapolation rule,
the code takes 2 small steps and 1 large step. When we count the steps we give the
number of the small steps. The code uses 1.5 decompositions, 3 back substitutions
and 1.5 function calls per successful small step when the extrapolation rule is used.

Now we are ready to present some numerical results. Two very simple but
illustrative examples are given below.

Example 6.1. Consider the problem

a sin2 (0) (y -0.01t)+0.01, y(0) 1,.t [0, 100], a < 0.(6.2) y’=

The exact solution of the problem is y(t)= 0.01t+exp [A(t/2-10sin (t/20)]. If
-A is small, then " and/’y are not very quickly varying in t, but when -A is large
they are.

The results given in Table 4 show that the computational work in the integration
process practically does not depend on the magnitude of parameter A.

Example 6.2. Let us consider a more stringent problem:

y’=Asin2()(y-t)+l, y(0)=l, t[0,100],(6.3) A<0.
\z/

TABLE 4
Numerical results obtained in the integration of (6.2). Error tolerance e 10-1.

-A

0.5
50

500
105
101

Steps

15
18
18.
19
17

Decompositions

15
24
27
29
27

Function calls

31
35
32
33
29

Substitutions

30
59
54
58
54

Accuracy

2.5E-2
5.0E-2
7.4E-2
5.1E-2
5.0E-2

The exact solution of the problem is y(t) +exp [A(t/2-sin t/2)]. If -A is large
the functions/ and/’y are varying very quickly in t; moreover, ]" is also varying in y.

It is seen from Table 5 that the computational work increases when -A becomes
large, but not very fast.
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TABLE 5
Numerical results obtained in the integration of (6.3). Error tolerance e 10-1.

-A

0.01
50
103
106

Steps

15
28
31
39

Decompositions

15
42
47
57

Function calls

31
48
52
66

Substitutions

30
84
94
114

Accuracy

2.2E-2
1.0E-1
1.1E-1
1.0E-

An MDIRKM (as implemented in Y12NBE) has also been used in the solution
of some problems of chemical origin ([21], [22]) for which all assumptions made at
the beginning of this section hold. The problems and some previous experiments
concerning these chemical problems are described in [20].

An implementation of this MDIRKM for linear problems with large and sparse
matrices A(t) has also been developed [22]. The sparse matrix algorithm is based on
ideas described in [24], [25], [26], [28]. Numerical examples, with s up to 255, are
given in [22].

A code based on the use of MDIRKM’s and designed for nonlinear problems
which have property S is under preparation at RECKU (the-Regional Computing
Centre at the University of Copenhagen).

7. Some concluding remarks. It is necessary to emphasize that the MDIRKM’s
will be efficient only when the IVP1 has property S (also property S* if the problem
is linear) and when e is large. If this is not so then the DIRKM’s of order p >-2 may
perform better. If the error tolerance is stringent then the code STRIDE [7], [10],
[11], which is based on singly-implicit Runge-Kutta methods ([3], see also [9]; these
methods are derived by the use of a transformation proposed in [8]) implemented in
a variable stepsize variable formula manner, will work much better than any MDIRKM
(whose order cannot exceed 2). This means that the MDIRKM’s must be used carefully.
If the problem is large and the user can establish that the nonlinear problem which
has to be solved has property S, then the use of MDIRKM’s will normally be efficient
(and sometimes very efficient). Often the problem has property only on a part of
the integration interval. If this is so the MDIRKM’s should be used in conjunction
with some other methods (STRIDE). The use of MDIRKM’s with linear problems
which have property S and even S* is also very efficient. If the problem is not large
(say, s <-10), if e is large and if the QNIP is replaced by GE (as in Y12NBF), then
the MDIRKM’s will be efficient also for linear problems which have property S; the
computational cost of the decompositions is not very large (in comparison with the
computational cost for the back substitutions) and the extra decompositions will be
compensated by a great reduction of the numbers of function calls and back substitu-
tions. If the problem is linear and large, then matrix A(t) is usually sparse and some
sparse technique can easily be implemented, and the use of MDIRKM’s is again
efficient if the above conditions are satisfied. Note that large linear problems (1.1)
arise often in practice (e.g., in the solution of some parabolic partial differential
equations [27], or in chemistry [22], and an investigation of the properties of the
problem may result in a considerable improvement of the efficiency of the numerical
integration when the right method is chosen.

Acknowledgments. Section 4 has been written following the constructive comments
on a previous version of this paper made by an unknown referee. The author would
like to thank him very much for the helpful suggestions.
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AN INTERVAL ANALYSIS APPROACH TO RANK
DETERMINATION IN LINEAR LEAST SQUARES PROBLEMS*

THOMAS A. MANTEUFFELS"

Abstract. The linear least squares problem Ax-b has a unique solution only if the matrix A has full
column rank. Numerical rank determination is difficult, especially in the presence of uncertainties in the
elements of A. This paper proposes an interval analysis approach. We define a set of matrices A that
contains all possible perturbations of A due to uncertainties and say that At is rank deficient if any member
of A is rank deficient. A modification to the OR decomposition method of solution of the least squares
problem allows a determination of the rank of At and a partial interval analysis of the solution vector x.

This procedure requires the computation of R -1. Another modification is proposed which determines the
rank of A without computing R -1. The additional computational effort is O(n2), where n is the column
dimension of A.

Key words, linear least squares, numerical rank, QR decomposition

1. Introduction. The linear least squares problem

(1.1) Axb

has a unique solution only if the matrix A is of full column rank. Numerical determina-
tion of rank is not always easy, especially in light of uncertainties in the elements of
A. It is often the case that A (agj) is known to be correct only within certain tolerances,
and the desired but unknown A (aij) satisfies

(1.2) li] aii + Ii],

where yij, ij are relative and absolute error bounds. The uncertainty in may cause
rather large uncertainties in the solution x. If any A in (1.2) is rank deficient, then a
numerical solution may be completely unreasonable.

It is essential that algorithms designed to solve linear least squares problems
address the question of rank deficiency. A complete answer would require an extensive
interval analysis and the arrays of bounds (’i]) and (i]) (cf. Hanson and Smith, [7],
[8]). For the most part this extra computation is unwarranted. In this paper, we address
the situation where the matrix is assumed to be of full rank. The most efficient
algorithm for this case is the OR decomposition of A based upon Householder
reflections (Golub [5]). We will show that a minor modification of this algorithm will
yield bounds that help determine the rank of the numerically uncertain matrix A.

The algorithms proposed here yield as much information about the possible rank
deficiency of A as a singular value decomposition (Golub and Kahan [4]). The
computational cost of a singular value decomposition is difficult to predict because of
the iterative part of the algorithm (cf. Lawson and Hanson [10, p. 122]). As a general
rule, the total cost is 2 to 8 times that of the fixed part of the algorithm. The algorithms
proposed here are less costly than even the fixed portion of the singular value
decomposition.

1.1. Notation. We will use the following notation. Capital letters will denote
matrices, boldface small letters will denote vectors, and small letters will denote scalars.

* Received by the editors July 8, 1980.
t Los Alamos National Laboratory, Los Alamos, New Mexico 87545.
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The m n (m _-> n) real-valued matrix

A (a)=

has a singular value decomposition

A UV*, E diag (O’1, O’n) 0 < O" =<" < O’1,

where U,,, and V,, are unitary matrices. We will use the vector norms

Ilvll max vl,

1/2

and matrix norms

Ilall max la,l mgx Ilal[1,

IIAII=-- max Ilaxll=-
Ilxlh

1/2 1/2

The 2-norm may appear without subscript. The vector ei will denote the fth basis
vector and e (1, 1,..., 1) We will let C(A)= IIAIIIIA+II,, where A+ is the pseudoin-
verse of A (Moore-Penrose generalized inverse), be the condition of A in the
appropriate norm.

1.. Problem definition. Consider the set of matrices that includes all perturba-
tions in (1.2). Let

(1.3) A {A +: [Oi][ max
We will say that A is of full rank if every sA is of full rank. A subset of columns
of A will be said to be linearly independent if there exists no eA whose
corresponding columns are linearly dependent. An independent set of interval columns
will be said to be maximal if no larger independent set includes it. The Rank (A)
will be the cardinality of the largest maximal independent set of columns of A. This
yields

(1.4) Rank (A) min Rank ().
AAo

Notice that {a/ a} and {a/, a} may both be dependent sets, while {a a} may
be an independent set. In fact, one can construct matrices for which the inequality in
(1.4) is strict. However, if the right-hand side equals n, then equality holds.

A desirable result would be to find a largest maximal independent set of columns
of A and produce an interval solution xz that contains all possible solutions based
upon this maximal set. Such a result is possible but requires an inordinate amount of
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computation and storage (cf. Moore [13], Hanson and Smith [7], [8]). The goal of
this paper is to obtain as much of this information as possible at a moderate increase
in computation and storage over the Businger-Golub QR decomposition method
(Businger and Golub [2]).

Consider a larger interval matrix in which the error bounds are the same throughout
each column. Let

y m.ax max
(1.5)

A( {A +*" [,1-< max (’yjlaij], ’j)}.

One can picture A( as a matrix each of whose columns is represented by an m-
dimensional box in. R with sides parallel to the axes. The Householder reflections
used in the QR decomposition rotate the vector about the origin. The sides of the
box may no longer be parallel to the axes. For that reason we enclose the box in a
ball. Let

1/2

ej =( max (’yjlaij[,
i=’I

(1.6)
A {A + q’: llill <-- i, 1,..., n}.

.Finally, consider an interval definition based upon the Frobenius norm. Let

(1.7)

This is the interval matrix underlying methods based upon singular values.
Notice that

(1.8) Ao
_
A(

_
A

_
A.

In this paper we will use A. It has the property that the set of perturbations is
invariant to multiplication by a unitary matrix. While rank determination based upon
A is not as precise as that based upon A, it is preferable to rank based upon A.

1.3. Overview. We will show in 2 that, while singular value decompositi6n
yields a partial answer to the rank of A, an equally definitive answer can be garnered
from a QR decomposition and inspection of quantities related to IIR-1111. The latter
can be established with less computation effort. In 3, an algorithm will be proposed
that constructs a maximal set of independent columns of A. Further, a partial interval
analysis of xx will be presented. This algorithm requires the construction of R -1 as
the QR decomposition proceeds but remains computationally more efficient than
singular value decomposition. In 4, it will be shown that a maximal set of columns
may be determined without construction of R-. The additional computation over
the QR decomposition is O(n2). Section 5 will discuss numerical results.

This work is similar in nature to that of Golub, Klema and Stewart [6]. There
the goal is to find an acceptable reduced rank solution based upon A. Their algorithm
compares solutions based upon numerical pseudoinverses of different ranks. Here we
assume full rank and only consider reduced rank solutions when rank deficiency is
detected. No comparison between reduced rank solutions is presented. Their algorithm
requires more work and assumes less information about the uncertainties in A.
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The bounds established in 4 are similar in nature to those of Cline, Moler,
Stewart and Wilkinson [3] and the O(n) bounds of Anderson and Karasalo [1] and
Karasalo [9]. These papers deal with lower and upper bounds of CI(R) respectively.
The bounds of 4 also yield upper and lower-bounds of CI(R). The lower bound is
similar to that of Cline et al., and the upper bound will be better than that of Anderson
and Karasalo. Moreover, upper and lower bounds are constructed for each column.
These bounds are used to determine the independence of the columns. When the gap
between the upper and lower bounds leaves independence in question, the exact value
is computed.

In [1], [3], [9], the upper and lower bounds are used to estimate the smallest
singular value, which is in turn used to define numerical rank. One aim of this work
is to show that these bounds are as viable as the smallest singular value in detecting
rank deficiency. Indeed, the singular value bounds must be based uponA which may
be considerably larger than A.

This analysis precludes an accurate rank determination when a weighted least
squares solution is sought in which the weights vary greatly in magnitude. Singular
value analysis fails here as well. This case has been examined by Powell and Reid
[15] and Manteuffel [12].

2. Rank of A. For convenience we will first assume that the columns of the
matrix A have been scaled so that the uncertainty is the same in each. This does not
affect the solution of (1.1). Later we will lift this restriction. We have

(2.1) A {A +" I1i112 -<- e, ] 1, , n }.

Let

2.1. Tests based on singular values. While singular values can be used to accur-
ately determine Rank (A), they are imprecise for determining the more desirable
Rank (A). We have the following well-known result.

THEOREM 2.1. If rk <--e, then Rank (A)<k. If rk > e/-, then Rank (A)>=k.
Proof. Notice that if q q, then I1[1 <- e/. Further, notice that if ]IIIF -< e,

then . The theorem follows from well-known results on singular values (cf.
Stewart [14, p. 320)]).

Thus, the singular values will determine the rank deficiency of A to within /.
In general, the /n cannot be omitted.

2.2. Tests based on R-1. Rank tests based upon IIR-111 give similar results. First,
let

R- A (ii),
(2.3)

i=l

then

(2.4) p -IIR-I[Ix max Pi.

THFOFM 2.2. Let {Pi/}/=l be a subset o[ the Oi’s. If

p <--
/=1 E

then Rank (A) _-> k.



RANK DETERMINATION IN LINEAR LEAST"SQUARES PROBLEMS 339

Proof. Let A- QR be the QR decomposition of A. If we assume R is of full
rank, then Rank (A +) Rank (I + Q*R-1). If k n, we have

i=1 2

)2)1/2
1/2

j=l

If k < n, consider the submatrix of R-1 consisting of those columns associated
with the pj’s in the subset. Denote this by (R-)k. Again we have

which implies that these k columns of (I +Q*R-) are linearly independent for
every q . The case in which R is singular is.proved similarly. 71

The next result yields a more convenient form for rank determination.
THEOREM 2.3. If p >- 1/e, then A is rank deficient. If p < 1/e x/-, then A is of

full rank.
Further, if k card {pj" pi < 1/e x/}, then Rank (A)_-> k.
Proof. If A--QR is the QR decomposition of A, then the matrix A A +,
xF2t, has the same linearly independent sets of columns as the matrix Q*(A + xF)

R +. Note that .
Assume/9k " 1/e for some k. Define such that Oi -sign (tik)/pkQek. We have, and it is easy to show that (R +d) (R-lek)----O. Thus, A is rank deficient.
The last two results follow from Theorem 2.2. [q

This result is sharp in that the x/ cannot be omitted. Suppose A is such that
R -1 20 and pi=-l/ex/-, ]= 1,...,n. Then let xtt be such that Oi=(-e/x/-)Oe,
(e Y’.i el). We have , and

(R + Q*)(R-Xe) O.

Thus, A is rank deficient. On the other hand, suppose

R-1
0 0

One can show that for 1/exn<_-p < 3/ex/-22 we have Rank (A)= n.

2.3. Implidt sealing. Consider again the interval matrix (1.6) with perhaps
different bounds for each column. A singular value analysis without first scaling the
columns yields no information about A. This is not a major drawback, in that column
scaling so that the uncertainty is equal in each column is a standard practice. However,
this scaling can be handled implicitly when bounds are based upon R-. Suppose
A A. Let E =diag (e ,. , e,); then AE- A, where now e ei 1, j 1," , n.
The results of 2.2 apply with R replaced RE- and e replaced by 1. The pi’s must
be replaced by

i---1
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2.4. Operation count. A singular value decomposition involves an iteration and
so it is difficult to accurately predict how much computational effort is required. If
the algorithm of Golub and Kahan [4] is used, the fixed computational effort is
approximately 2ran 2 floating point operations. If a OR decomposition is followed
by a singular value decomposition, the fixed computation is mn 2 + 5n3/6 (Lawson and
Hanson [10, p. 122]). The OR decomposition requires mn2- n3/3 operations. Once
R is known, the quantities pj in (2.5) may be computed by successive back solves
requiring n3/6 operations and n words of storage. Thus, the OR algorithm with rank
determination based upon IIR-111 is computationally more efficient than singular value
decomposition for determining the rank of A

There are other advantages to computing R -1. These will be discussed in 3. In
4, bounds will be developed that yield much of the same information with only

O(n2) extra computation.

3. Constructing a maximal set. In this section an algorithm will be presented
which constructs a maximal set of independent columns. Also, bounds on the interval
solution based upon this maximal set are established.

3.1. The algorithm. Consider the OR decomposition of A. As in the Businger-
Golub algorithm (Businger and Golub [2]), the upper triangular matrix R A(") is
computed in n steps, where

(3.1) A(+1) =H(P(A P(,
P(), P( are row and column permutation matrices, and H( is the Householder
reflection matrix that zeros out the subdiagonal elements of the (k + 1)st column of
p(k) , (k)l)(k)

Let us denote

R(k) o(k),

(3.2) A(k)
o(k)l,

\13 22

where R()
11 is k x k and upper triangular. The elements of R (k) (k)

11 and R 12 are fixed
(up to column interchanges in 12 for step k + 1, , n. We can construct the inverse
of R as we proceed. Consider the matrix

(k)(3.3) Ak= (80),

where the elements are updated at each step according to the formulas

(3.4) 8 (k) =__1.
rkk

for 1,..., k-l,

(3.5)

forj=k+l, , n, for i= 1,. , k-l,

t(k) (k)(k--1).
ik Okk O ik

(3 6) ) __((k-1) ,(k) (k) (k) ,(k) (k)
ii + t) ik r k] t k] t) kk l" k]

We may write

A(k) A(k)\
(3.7) A(k)= 11 12/

A(k)]’0 -22

Here, a floating point operation consists of one addition and one multiplication.
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where

(3.8) Ak (R k) )-, nk)t2 (R k) )-R k)2

and A22 is as yet undefined.
After k steps, the first k columns of A are fixed. We may compute Pi, ] 1,. , k

using (2.5). Further, we may examine the columns k + 1,. , n in order to determine
which column should be ordered next. In the Businger-Golub algorithm the column
permutation is chosen to make Yk+l,k+l as large as possible. Here we choose column
k + 1 to make Pk+l as small as possible. Let s(k) be the vector such that sk) contains
the ]1" 112 of the corresponding column of 22. For ] k + 1,..., n let

(3.9) = e++
a’] i=l

If column j were to be chosen to be permuted to the (k + 1)st position, the resulting
p+l would be given by P We then choose the column order so that

+1)

(It should be noted that, even though p is chosen to be as small as possible at each
step, the inequality p p+ might not necessarily hold.)

This strategy has two motivations. The first is that it facilitates the construction
of a maximal set. Suppose we let k2 n and k 0 before the first step. Let us assume

_(k+)that pi<l, jk. If i >1 for some k<jk2, then the interval columns
{a,..., a, a} are linearly dependent. Column j may not be used in computing a
maximal set. This column should be put in position k2 and k2 set to k2-1. Only the
first k2 columns need be considered further. Now suppose p <l,j=k+l,... ,k2.
The column with the smallest of these is placed in the k + 1st position. Let k be the
number of elements of the largest subset of the first k + 1 columns such that p < 1
for this subset. By Theorem 2.2 and 2.3, we he k Rank (A).

If this process is continued until k k2, we will have constructed a set of columns
to which no other column may be added. If k k2, this is a maximal set. If k < k2,
the set of columns contains a maximal set which in turn contains the subset of columns
used to determine k. In practice, k k2 with few exceptions (see 5).

The second motivation for choosing p+l as small as possible at step k + 1 stems
from a forward analysis of the growth of uncertainty and roundoff error. In Manteuffel
[11] it is shown that the column with the smallest relative uncertainty should be
reflected out first. The theorems of 2 may be used to show that the p’s provide
upper and lower bounds on the relative uncertainty. If A +, s is decom-
posed using the same row and column pivot order as A, we will have R R +
where is also upper triangular. From Theorem 2.2 and 2.3, we have

(3.11) [wl( } O Iraqi, k 1,..., n,

where wkk is the kth diagonal element of . From Theorem 2.3 and 2.3, we know
that for each k there is some such that wkk] pk [rkk . Notice that if the absolute
uncertainty were the same in each column, then the column with the smallest relative
uncertainty would correspond to the longest column, as in the Businger-Golub
algorithm. The choice of the first column affects the size of the uncertainty in the
columns of R (). If one were to rescale at each step so that the absolute uncertainty
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were the same for each column of R 22, then the algorithm presented here would be
similar to that of Businger and Golub.

It is also shown in Manteuffel [11] (see also Powell and Reid [15]) that the growth
of uncertainty and roundott errors may be reduced by choosing Hk+l) to reflect the
first column of R k)

22 onto the nearest basis element. This may be accomplished by
ordering the rows so that the element of the first column of Rk22 with the largest
absolute value appears at the top of the column.

The overall cost of this algorithm is mn2 arithmetic operations. The QR decompo-
sition requires mn2- n3/3 operations, construction of A requires n3/6 operations and
the selection of requires n3/6 operations. This is still less than the fixed number of
operations required for a singular value decomposition, which is the smaller of

2 2mn + 5n3/3 or 2ran Note that A may be constructed over R so that the only extra
storage needed is for the vector ft. The extra computation required to select the
column pivot may be unwarranted. In 4, upper and lower bounds on Pk are construc-
ted at a cost of O(n) operations and the pivot strategy may be based upon these. In
fact, these bounds do not require the construction of A. However, A may provide
information about x, the interval solution.

3.2. Bounds on uncertainty. Once A R- has been constructed, both [JR-ill1
and IIR-II may also be computed. The norms [IRII1 and IIRII can be computed during
the decomposition. With these and the bound C2(A)CI(A)C(A), one can
analyze the relative uncertainty in the various norms; that is, the quantity

Ilxll
where is the solution of a perturbed system , can be bounded (cf. Stewart
[14, p. 223]).

We can also look at the term by term uncertainty to bound x
s, =b+O+, IlO + ll 

If we multiply both equations by Q we have

Rx=g, (R +) g+f,

where s, Ilf2ll e+. We can write

(x-t) R-(f-)
and

where 8f represents the ith row of A R -1. For small perturbations we may replace
Ixl by [xj[ on the right-hand side. This interval solution is fairly sharp in that we can
always construct a perturbation such that

(3.13) [Xi--il[li12(EN+l"- E]Xl)
Of course, (3.13) cannot be made to hold for all simultaneously.



RANK DETERMINATION IN LINEAR LEAST SQUARES PROBLEMS 343

4. O(n 2) bounds. In this section, we develop an algorithm that determines a
maximal linearly independent set of columns of A at an additional cost of O(n 2)
operations over the QR decomposition.

4.1. Upper and lower bounds. Let us again assume that the columns of A have
been scaled so that e ej; ] 1,. ., n. We will lift this restriction later. Since R is
upper triangular, it is an H-matrix.2 The corresponding M-matrix3 is

(4.1) / (q) ,, Iri, I, ,i -Iriil, j.

Let us write

(4.2)

Then

(4.3)

from which we see that

R D(I- T), D diag (r11, ", r,,),

R D(I T), D diag (11, , -,).

R -1 (I + T +. + T"-I)D-1,

-’ (+ T+... + T"-)D-1,

(4.4) /-1 _> [R-Xl => 0.

If we denote/-I (ai), then

(4.5) P) E 6i >= E [6iil
i=1 i=1

Since-0, the i’s can be computed with a single back solve. Let= (ff,...,
then, if e 7= ei, we have

(4.6) -Te= 0
and

(4.7)

The computation of t5 can be carried out during the QR decomposition and, in fact,
Pk will be known after the kth step of the QR algorithm.

The bounds in Anderson and Karasalo [1] and Karasalo [9] are less expensive
to compute, but also less accurate. There, R D(I-T) is replaced by a matrix, say
/ ES(I-), where the nonzero elements of each row of 5P _>-0 all have the same
value, and/-1 __>/-1 __> IR-1. Bounds similar to can be computed in O(n) arithmetic,
but they will, in general, be less accurate. In light of the fact that the QR decomposition
requires O(mn2) arithmetic, the O(n 2) arithmetic required to compute is not a great
burden.

Now, consider (4.6) with R -T in place of/-T. If we let

(4.8) R -T

2 A matrix A =(aii) is an H-matrix if the matrix A (ii) with a. la, I, aij -la,I # is an M-matrix.
A matrix A (ai) is an M-matrix if aj_-<0 for # L A is nonsingular, and A-x ->0.
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where the signs are to be chosen later, then we have

i=1 i=1

Since R T is lower triangular, we may write

(4.9) R’To
+1

and choose the sign of the ]th element of the right-hand side after/5i, < ], have been
computed. We may write

~= +1-- ri(4.10) Oj
rj

and choose the sign so that ItSj[ is as large as possible. Again, tSk will be known after
the kth step of the QR decomposition. We have then

(4.11) PJ <---- P, j 1, , n:

The lower bounds I are computed in much the same manner as certain quantities
in Cline, Moler, Stewart and Wilkinson ([3, p. 371]). There they are concerned with
what corresponds to I111=, while here we are concerned with each individual [/5. I.

Following their development, we can enhance the lower bounds by looking ahead
before choosing the sign. Suppose p’., j < k have been chosen. Each O’, ]>=k is
determined by

(4.12)

where the right-hand side has been split into two parts. The first part is determined
once O’,/" < k have been chosen. Denote this part by t5(k-1)j The two values of tSk are

(4.13) /k __1 (ts(k_) + 1).

We denote these by tS and tS. We know that both values satisfy

(4.14)

and so may choose the larger in absolute value for our lower bound. However, we
are still free to choose either pk or tS for computation of (")p ,]>k as long as we
are consistent throughout. Let

(4.15)
rljP k,

and choose the sign to maximize

There is about twice as much work in this algorithm, but the overall work to
compute I remains O(n2). Notice that the vector of bounds does not necessarily
satisfy (4.9) but will satisfy (4.11).
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4.2. Implicit scaling. As in 2.3, these bounds can incorporate implicit scaling.
If we again consider A as in (1.5), then the formulas corresponding to (4.7) and
(4.10) become

(4.17) P-t e]-"
i=1

Iri]l

+ej rq(4.18)
r =

These bounds can be accumulated as a sequence of partial sums. Let

0) ej,

0, 1,. , n,

and at step k update (k-;), (k-;) by the formulas

(4 19) k)= 1 k-;)

(4. m

and for ] > k

(4.21)

(4.22) [3 -k rkj

4.3. Constructing a maximal set. These bounds may be used in the pivot strategy
to construct a maximal set. Let k 0, k2 n at the outset, and assume that after k
steps we have fit < 1, j 1, , k. We now choose column k + 1 to make ffk+l as small
as possible. First, we can use to discard columns. Let s(k) be the vector such that
(k)s contains the 11"112 of the corresponding column of R (k)

22. If column j were to be
shifted to the (k + 1)st position, then/5k+1 and Ik+ll would have the values

(4.23) Pk+ 

(4.24)
sj

where-(k) k)Pt are computed by (4.21) and (4.22). If, for some j, k <j< k2, the
absolute value of the quantity in (4.24) is greater than or equal to 1.0, then the interval
columns {a(, , a, at are dependent. Column j should be put in position k2 and k2
set to k2-1.

After as many columns as possible are discarded, column k + 1 is chosen from
among the remaining columns to make k+, as small as possible. If ffk+X < 1, we
proceed. If not, then [k+l < 1 k+. In order to insure that the first k + 1 columns
are not dependent, we must compute the exact value of Pk+X. This can be accomplished
by a single back solve. If Pk+ g 1, this column must be discarded. If Pk+ < 1, the
column is accepted. Since Pk+l is a better bound than fik+, we may set fia) k+l
for computation of p, j k + 2, , k2 as in (4.21). This does not affect (4.11).

In this manner, we can construct a set of columns to which no column may be
-2added. Let k be the number of columns in the largest subset for which p < 1;
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then, by Theorem 2.2 and (4.11) kl_-<Rank (A). If kl k2, we have a maximal set.
If k k2, then the set contains a maximal set which in turn contains the subset of
columns used to compute kl.

If A is assumed to be of full rank, that is, if it is not clearly rank deficient from
the outset, then the bounds fik will most likely suffice for all but at most a few columns.
In some of these columns fik may provide enough information. The exact value Ok
will be computed O(1) times for all but the most pathological problems. This yields
an O(rt 2) algorithm that produces a maximal set of independent columns of A.

5. Numerical results. In this section we will compare the performance of the
three algorithms described above, the algorithm of 3 that computes R- (we shall
call it M1), the algorithm of 4 that creates upper and lower bounds (M2) and the
algorithm of 4 that chooses the lower bound by looking ahead at partial sums (M3).

The ability of the three algorithms to determine numerical rank has been spelled
out in the discussion above. However, several questions about their comparative
performance must be answered by numerical tests.

Methods M2 and M3 will yield essentially the same pivot order, based upon the
upper bounds . The difference between M2 and M3 lies in the computation of the
lower bounds . While M3 generally produces better bounds, the cost of computing
those bounds is higher. The advantage to having better bounds lies in less frequent
calculations of exact values of p. While M3 did compute fewer exact values, the
difference was not sufficient to warrant the extra arithmetic as will be shown below.

In M1, the pivot order is determined by p, and so, it may differ from the pivot
order produced by M2, M3. While each algorithm will find a maximal set of indepen-
dent columns, the numerical rank produced by M1 may differ from that produced by
M2, M3. Even if the rank is the same, the maximal sets may contain different columns.

Four tests were performed. In each trial an m n matrix A (aii) was constructed
with n [10, 50], m In, 2hi, and aii [-1, 1] (each uniformly distributed). In the first
test 2,000 trials were run with relative uncertainty yj 10-4, j 1, , n and absolute
uncertainty ’j 10-4,/" 1,..., n. In the second test, 500 matrices were generated.
Each matrix was given the four values y sr 10-2, 10-4, 10-6, 10-8, 1, , n
for a total of 2,000 trials. In the third test, after n and rn were chosen, an integer k
was chosen so that n- k _-< 5 and A was constructed so that the last n- k columns
were linear combinations of the first k columns. Then a matrix (4’i) with .
[-10-5, 10-5] was added to A. Each matrix was given the four values y ’ 10-2,
10-4, 10-6, 10-8, 1,’’’, n as in the second test. A total of 2,000 trials were run.
In the fourth test A was chosen as in the first two tests, but relative and absolute
uncertainties were chosen so that %. 10-NEX, NEX [0, 14] and sr [0, 1] (uniformly
distributed).

The first test is perhaps the most realistic set of problems. These algorithms were
designed to handle problems that are assumed to be of full rank, with proper detection
of that rare instance when rank deficiency occurs. Tests 2, 3 and 4 were constructed
to produce increasingly more trials which were rank deficient and rank deficiencies
of higher orders. In test 4, the absolute uncertainty was of the same magnitude as the
elements of A.

Table 5.1 shows how many of the trials were of full rank, in how many trials M1
produced the same rank as M2, M3, and in how many trials M1 produced the same
maximal set as M2, M3. Also shown is the total number of exact values of that M2
and M3 were required to compute. Figures 5.1-5.4 show the distribution of the upper
and lower bounds, and , for those trials in which M1 produced the same column
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TABLE 5.1

Same Exact Values
Test Trials Full Rank Same Rank Max Set M2 M3

2,000 2,000 2,000 2,000 4 4
2 2,000 1,977 1,998 1,983 625 620
3 2,000 896 1,974 1,857 1,495 1,313
4 2,000 101 1,446 868 17,465 16,711

order as M2, M3. The left half of each figure shows the percent of the total with
ItSjl/Oj <-x and the right half shows the percent of the total with Oj/6i <-x. Here, x is
the value indicated on the abscissa.

We may conclude that there is enough similarity between the performance of
algorithms M1 and M2, M3, in terms of finding a maximal set, that the extra
computation required by M1 may be unwarranted. Method M1 does provide exact
values for CI(R) and Co(R), but Figs 5.1-5.4 show that M2 and M3 also provide
good bounds for CI(R). These bounds are best on the trials that are rank deficient
or nearly rank deficient. Method M1 does provide bounds on xz which cannot be
extracted from M2 or M3.

FIG. 5.1. Test 1.

P

.I

FIG. 5.2. Test 2.

FIG. 5.3. Test 3.
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FIG. 5.4. Test 4.

The test results also show that M2 is more economical than M3. While Figs.
5.1-5.4 show that M3 yields better lower bounds, Table 5.1 shows that more arithmetic
was required to achieve the same results in terms ot finding a maximal set.

In every trial in the first three tests we had k k2 so there was no doubt about
the rank of A. In the fourth test there was uncertainty as to the rank in some trials
but k2-kl never exceeded 3.
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OPTIMAL SMOOTHING OF NOISY DATA USING SPLINE FUNCTIONS*

FLORENCIO UTRERAS D.t

Abstract. We consider the problem of approximating a function f supposed to be "smooth", given, its
values known with error at n different points of a real interval [a, b]. To approximate f we use the natural
smoothing spline of order q and parameter r. For choosing % the method of generalized cross validation,
proposed by Wahba and others, has very interesting theoretical properties, but requires expensive calcula-
tions.

The asymptotic behavior ofthe eigenvalues associated with the spline functions provides a practical
method for calculating the GCV function which reduces the computation time by a factor of n.

Key words, splines, smoothing, cross validation, noisy data.

1. Introduction. We consider the problem of approximating the unknown func-
tion f:[a, b] R, supposed to be "smooth", from the values f(ti) measured with error
at n distinct points of [a, b]. More precisely, let

(1.1) Zi =f(ti)+ ei, 1, 2,. , n,

where ei are random errors satisfying

[e/] O,

(1.2) [EiE]] O, A

and f eHEa, b],.defined by HOEa, b]={g’Ea, b]Rlg, g’, , g<O-) are absolutely
continuous and IgOr) (t)]2 dt < +c}. For n => q, our estimate for f is the polynomial
smoothing spline cr,, defined by

b

Ia (q) 1 L 2(Zi O’n,z(ti))27" /trn,,(t)]2 dt +-- a in
/i=1

{ f, 1" 2 (zi g(ti))2}
b

[g()(t)]2 dt+ Y ol inmin r
gHa[a,b] n

where the weights a/n are defined by

1

2._ Ui(1.4) Olin =.

n i--i vi

The Olin are completely determined if we know the vi up to a mu]tiplicative constant.
Also, Olin l for l, 2,. , n if vi v for I, 2,. , n.

Let us denote Y rn,,(ti), i, 2," , n. It is we]] known that

(1.5) z Y

is a linear one-to-one transformation from R" into itself, for each r > 0. We call the
associated matrix An (r).

* Received by the editors August 14, 1979, and in final revised form March 25, 1981.
5" Departamento de Matemfiticas, Facultad de Ciencias Ffsicas y Matemfiticas, Universidad de Chile, Casilla

5272-Correo 3, Santiago, Chile.
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The main subject of this paper is the practical choice of r, the tradeoff between
the "roughness" of the solution, measured by [g(q)(t)]2 dt, and the infidelity to the

2 (zi g(ti))2.data, measured by (l/n) Y.i=l ain
Wahba and others have proposed choosing r as the minimizer of the (generalized

cross validation) function:

For theoretical properties of this estimator see [18], [5] and [16].
Wahba [18], [19], Craven & Wahba [5] and others have shown that the minimizer

of (1.6) provides a very good estimate of the optimal parameter, even for relatively
small samples, but their method for performing this calculation is very expensive.

The algorithms that we develop here allow us to treat large samples at a very
reduced Cost. For cubic or quintic splines the cost is 1In times the cost of actual
algorithms ([5], [20]) in the case of equally spaced data.

Early, Utreras [14] gave the theorem on the asymptotic behavior of the eigen-
values of f for the equally-spaced-data case. The present paper generalizes that result
for unequally-spaced data and general standard deviations, and it also proposes a
practical method for using this theorem in the general case and provides a comparison
with other methods.

2. Mathematical background. Let [a, b] be a real interval and a < t < t2
< tn < b be n different points belonging to [a, b]. If Y1, Y2,"" ", Y,, are n real

numbers (n > 2), it is well known that there exists one and only one solution to the
problem

b

(2.1) Minimize{I [g(q)(t)]2 dt}, g(ti) Y, i= 1,2,...,n.
gH"[a, b]

The solution o- of this problem is called the interpolating spline of order q. We also
know that (r has the following properties:

(i) o" is a polynomial of degree _-< q- 1 in the two intervals

[a, tl], [tn, b];

(ii) r is a polynomial of degree =<2q-1 in each interval [ti, ti/l], i=
1,2,... ,n-l;

(iii) (r
(i is continuous,/" 0, 1,..., 2q- 2.

Let S be the linear space of all real-valued functions defined on [a, b] satisfying
(i), (ii) and (iii). We define a basis on S in the following way. Let o-i 1,..., n be
the interpolating spline satisfying

1, ]=i,(2.2t r’(ti)
O, i i.

Thus, if o- is the solution to the problem (2.1), then

(2.3) o’= Y/o’i.
i=1
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Let s be an element of S whose values at tl," ’, tn are given by

s(tj)=xj, ]= 1," ", n.(2.4)

We then have

(2.5)

with

b

i=l i=l

E x Y]o) 1
i=1 /=1

b

qi] Ja O" i-(q) (t)o’7) (t) dt,

and we define l). as the matrix whose elements are o" Thus we havei].

b

(2.6) Ja r()(t)s()(t) dt (x,

where (.,.) denotes the scalar product in
Finally, let z > 0 be a given real number and z, zz,"’, z, be n real numbers.

We define the natural polynomial smoothing spline as the solution of the problem

{ f 1 }Minimize r [uCq)(t)]2 dt+- a,(u(ti)-zi)z
uH"[a, b] i=1

This problem is equivalent to

Minimize { Minimize
yeg’ Ha[a, b

u(ti) Yi, 1,’",

r [u(a)(t)]2+dt +- E O2in(U(ti)--Zi)2
ni=l

=Minimize r(Y, flaY)+- Olin(Yi--Zi)2
ygn n i=1

and the solution Y" satisfies

1 y 1
(2.7) rflY" +--D Dz,

n n
2where D, is the diagonal matrix with elements a i, 1,. , n. This equality allows

us to write

Y" (1 + nrD-
(2.8t

=A,(z)z,

where

(2.9) A,, (r) (1 + nrD11)-1.
Let AI,,, A2,,, 3,,""", ,,,, be the n eigenvalues of nD- fl in increasing order. Then

1
(2.10) Tr (A,(r))=

i= 1 + "rAin

In the following section we study the behavior of the hi, and get an asymptotic
expression for (2.10).
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3. The asymptotic behavior of the eigenvalues. Let us consider the following
bilinear forms defined and continuous on Hq[a, b] Hq[a, b]"

b

(3.1) 3(u, v)= Ja u()(t)v(")(t) dt,

b

(3.2) (u, v)= Ja o(t)u(t)V(t) dr,

where w is a positive function such that there exist positive constants cl, c2 satisfying

(3.3) O<cl<=w(t)<--C2 forallt[a,b].

Let/xl,/z2,/z3," be the eigenvalues of the problem

(3.4) 3(u, v) =/xM(u, v) for all v HO[a, b].

Our aim in this section is to study the relationship between these eigenvalues
and those associated with nD- l’l,. This relationship will be an asymptotic one, that
is to say, it will hold for large n. Therefore in order to clarify the presentation, we
introduce the superscript n on the abcissae h," ", t,; they will now be denoted by
t’,t,.." ,t,.

Now, we introduce a numerical quadrature formula which approximates M, say sg,:

(3.5) ,(u, v)= ’. u(t’])v(t’])to(tr)d’,
i=1

where the weights {d}’ are defined by

d7 tl -a +hl,

hi + hi+l(3.6) d’= i=2,... ,n-l,
2

and

An =b-t.+h._n

hi ti+l ti 1, 2, , n 1.

With this definition, it is straightforward to prove the following result.
LEMMA 1. If U, V HO[a, b (q > 2) and to HE[a, b ], we have the following error

bound"

(3.7)

where

=max{t1 -a, b-t., hi, h._l}.

Proof. See Utreras [17].
Consider now the eigenvalue problem

(3.8) (u,, v)=/z,M,(u,, v) for all v e Hq[a, b].

In the following lemma, we prove that the eigenvalues of (3.8) are those of
nD fl,. and conversely, we also state Ihat the eigenfunctions of (3.8) are polynomial
spline functions belonging to S].
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LEMMA 2. Let Ix ln, Ix2n,""’, Ixnn be the eigenvalues of (3.8) in increasing order,
and suppose that there exists a function to H2[a, b satisfying

1 2
to (t) =---Tg ai.,ndi 1, 2, n.

Then, we have
(i) u, is a solution of (3.8) implies that u, S
(ii) Ixi, Ai,, 1, 2,. , n.

Proof. The eigenvalues of (3.8) are the solutions of

Thus,

(u., v)= ..(u., v) for all v . Hq[a, b].

() (t)v()(t) dt E u.(t’])v(t’)to(t’])U Ixn
i=1

[ix.u.(tT)to(t’)d’]]v(t’)
i=1

for all v Hq[a, b ].

So we have

(q)(t)v dt= jiv(tT)Un
i=1

for all v HO[a, b ].

Then, using a well-known theorem on the characterization of spline functions (see [8,
pp. 219-221]) we conclude that u, S. Problem (3.8) is thus equivalent to

u. e S, (t)v()(t) dt

ix. u.(t’])v(t’])to(t’])d’
i=1

for all v e S.

Let x, R" be the vector of values of u, at the knots, and y R" the vector of values
of v at the knots. So, using (2.6), we can write

(3.9) (flx., y)= Ix, . x,iyto(t’)d’ for all y
i=1

Now, from the hypothesis, this problem is equivalent to

1 2(’nXn, y) Ixn ’, Ol inXniYi
i=ln

1
IX.- (D.x., y) for all y ",

n

and so

1
(3.10) D.qx. IX. D.x., nDx.O,.-nXn tx,x,.

n

Conversely, if x, is an eigenvector of (3.10), we can define as u, the spline function
having x, as the vector of values at the knots, and the result holds.

Now, we can state the main result of this section.
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THEOREM 1. Let Ain 1, 2,. , n be the eigenvalues associated with the matrix

nD- l), and suppose that there exists a positive function to H2[a, b] such that

1 2(i) to(t) O in, 1, 2," ", n

(ii) there exist C1, C2 > 0 satisfying 0 < Ca <= to(t) <- C2;
(iii) lim,_. 6, 0.

Then the Ai, converge to the eigenvalues of the problem (3.4). That is to say,

lim lin [Ui for each fixed i.

Proof. To show this result, we apply a lemma by Fix (see [6, Lemma 4.1]). We
have that supllull=l infllll=a [M(u, v)-s4(u, v)l--: r/ goes to zero as n increases because

r/ sup inf Isg(u, v)-M,,(u, v)[<-_ sup [M(u, v)-M,,(u, v)[<-62,, Ilto][.
[lull [[vl[= u,v

Ilull
Ilvll=l

Also, we have that , M, s/, are symmetric and positive semidefinite, so the eigenvalues
are simple, and we can apply the theorem by Fix, which states that

lim lain -/./i[ 0 for each fixed i.

The following result tells us something about the eigenvalues {[d,i}i N.
COROLLARY 1. The following two problems are equivalent.

(V.P.) (u, v)=u(u, v) for all v c=Hq[a, b];

(-1)qD2qu tZtoU,
(D.P.)

u(J)(a) u(i)(b) O, ] q, , 2q 1.

Proof. It suffices to integrate by parts.
Note. It is necessary to discuss the hypothesis

1 2to(tT)-"----’;-YnnOtin, i=1,2,.’’ ,n.
ndi

This function has a simple form in two important cases.
(1) When the data are equally spaced and the standard deviations are equal, to

becomes a constant.
(2) When we can choose the data points in such a way that the distance between

consecutive points is proportional to the reciprocal of the variance of the
errors, to becomes a constant.

Generally, this hypothesis implies the existence of a relation between the choice
of the data points and the variance of the errors. This relation must be invariant with
n. We believe that it could be possible to show the result using a hypothesis like

O < Ca <- to. t’ ----;. a i.
nd

with lim._. to. to, the convergence being taken in HZ[a, b].
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Now we are interested in the behavior of Tr (An(’)) as n increases. We have

11
D.An(z)z + rfqA.(r)z D.z,

this equality is equivalent to

(3.11) 1-(D.A.(r)z,x)+r(fAn(r)z,x)=l(D.z,x) forallxeRn.
n n

If we denote by r, s S the spline functions satisfying

s(tT) xi, 1, 2," , n,
(3.12)

r(t’) =zi, i= 1, 2,..., n,
we have

(3.13) Mn(O’n,,S)+’Y3(O’n,,S)=egn(r,s) for all s S.
This equality leads us to study the operator Rn(’) defined on H’[a, b], with values
on Hq[a, b] as

(3.14) Mn(R(r)g,u)+’3(Rn(’)g,u)=Mn(g,u) forallusH’[a,b].

It is easy to see that R, (’) is a finite-range operator, and its trace is given by

(3.15) Tr (R, (-)) Tr (An(’)).

Let us define R (-) from HO[a, b] into HO[a, b] by the variational equality

(3.16) eg(R(’)g,u)+r3(R(’)g,u)=M(g,u) forallusH"[a,b].

The eigenvalues associated with R0") are {1/(l+’txi)}iN, and the i satisfy the
following inequality

(3.17) (i)2 <=/ <= B(i)2, 1, 2,...,

for some a,/3 > 0. (For a proof of this result, see Utreras [17].) Then we have that

1
< +oo for each fixed " > 0.

We conclude that the self-adjoint operator R (-) belongs to the trace class, and

(3.18) Tr (R(-))= Y,
1

i= 1 + ’/xg

The next theorem gives us a relationship between Tr (R (’)) and Tr (An 0")).
THEOREM 2. Under the same hypotheses as in Theorem 1, and if limn-,oo nS 0,

we have
(i) lim,_, Tr (An (’)) Tr (R (-)) for each fixed " > 0;
(ii) lim_, ITr (An(z))-Ei= 1/(1 + ’tzi)l 0.

Proof. Let R(-) be the self-adjoint operator defined by the variational equality

/,(’)& e S, ’(/n (’)b, r) +M(/n (’)&, (r) M(&, or) for all & e S,

and call {1/(1 + -:i,)}’ the corresponding eigenvalues. Then we have

1 1<_, l<_i<=n,(a)
1 -" Tin 1 " =[d,

(b) IIR () -..()11- o().
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Inequality (a) comes from the monotonicity of the Rayleigh-Ritz-Galerkin approxima-
tion, and (b) comes from the error estimate (see [2], [3]). Let r/> 0 be a given positive
number. We have

i=1 1 +r: 1

Using the inequality tX+q >- ti2q, we have

1
E O(1-),
i=J 1 + rlzi

so we can choose JN such that Y.i=j 1/(1 + r/zi)< r/.

Also, we can choose N(J) such that for n >-N(J) we have

1 * 1
i=, l+r/zi ,-1= 1

Then we obtain

ITr (R (r)) Tr (/n (r))l <-
i=1

<-3,/.

Also, we have

s 1
1 + 7"i

ITr (/n (r)) Tr (Rn (r))l <- I(Si, (Rn () -/n
i=1

This last inequality is obtained using the theorem by Fix [6]. Thus we get the desired
result.

This theorem allows us to replace Tr (An (r)) by Y’.i 1 / (1 + r/xi) in the computation
of the generalized cross validation function. It is important to remember that we have
only pointwise convergence. However, the evidence from numerical experiments is
very convincing, and the gain in computing speed is enormous. In the following sections
we describe some numerical experience. For a more complete set of tests and com-
parisons, see Utreras [17].

4. The case of equally-spaced data and constant standard deviation. In this
section we particularize the preceding results when the ti are defined by

2i-1
(4.1) ti =a+(b-a) i=l,2,...,n.

2n

We assume too, that the errors are independent random variables satisfying

(4.2) ’[e iEn]-- V 2. i= 1, 2,’’" n.

Thus, we assume all variances to be equal to the unknown constant, v 2. In this case
the discrete bilinear form defined by (3.5) becomes

(4.3) s,(u, v)
b a

Y. u(t)v(t’)o)(t’),
F/ i=1
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and the weight function becomes the constant 1/(b-a). So the differential problem is

(_l)qD2qb 1
b,

b-a
(4.4)

c(J)(a) c(i)(b) O, j q, ., 2q 1.

It is easy to see that/x =/x2 /xq 0. Define Ai =/xi/q for N. It is well known
that the A are the eigenvalues of the problem

(-1)’DZ’c 1
b-a

(4.5)
ci)(a)=d,i)(b)=O, /’=0, 1,... ,q-1

These eigenvalues are well known for q 1, which corresponds to the harmonic
oscillator or the vibrating string. For q 2 we find the problem of the vibrating rod
(see Courant and Hilbert [4]). We have tabulated these eigenvalues in this case and
also in the case q 3 (see Utreras [17]). Let us return to our initial problem, that is,
to calculate the GCV function V, (r),

1 IIz -A,(r)zll2(4.6) V,,(r)

n(1-l- Tr (A. (r)))n

To calculate the denominator we use the approximate expression given by Theorem
2, that is,

(4.7) Tr (A.(r))
i=1

To calculate the numerator, we use an algorithm by Paihua [10] which performs the
computations in 30n operations.

Table 1 gives the run times (in seconds) on an IBM 360/67 computer. As is easily
seen, time increases almost linearly with n.

TABLE 1

n secs. n secs.

50 0.7993 250 3.1795
100 1.1376 350 3.7913
150 1.7564 350 4.4460
200 2.4703 450 4.8975

To illustrate the numerical behavior of the method, we performed the calculations
on artificial data, zi =f(ti)+e, 1, 2,..., n. The e’s are pseudorandom normal
numbers with standard deviation equal to 0.1. Because f is a known function, in this
example we use [(x) cos 4rx. In the same graph, we plot the function (F), the spline
calculated by GCV with the proposed algorithm (S) and the data (x). We have repeated
the experiment for n 50,100,200,400 to illustrate the remarkable "convergence"
properties (which we cannot prove). See Figs. 1-4 for results.

The reader interested in computer programs for cubic or quintic splines is referred
to [15]. Copies of this publication are available by request.
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FIG. 1. 50 points.

FIG. 2. 100 points.

FIG. 3. 200 points.
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FIG. 4. 400 points.

5. A practical method in the general case We return now to the general problem,
that is, with general function o. It is clear that we cannot calculate the eigenvalues
in a simple way for general o, so we propose a practical method based on a finite-
difference approximation of the differential problem.

More explicitly, let m > n and consider a finite-difference method with step
(b-a)/m to approximate the eigenvalues of the associated differential problem. The
convergence of such methods has been studied by Kreiss [7]. If m is large, we can
consider the first n eigenvalues of the finite-difference approximation as the exact
ones and use them to calculate Tr (A,(-)). It might be possible to show that this
approximation is convergent, but we do not establish this here.

With this method, we reduce our eigenvalue problem with a full symmetric matrix,
to the following one:

(m + 1’ 2(5.1) \b-a] Fx OOx, m >>n,

where F is the discretization matrix and D is a diagonal matrix containing the values
of o at the discretization points.

We can transform this generalized eigenvalue problem to a simple eigenvalue
problem without changing the band structure of the matrix. The new problem becomes

(m+l2(5.2)
b a /

-/F-/v Or, v .
The matrix -1/2F-1/2 is also symmetrical, so we can apply the Schwarz method

(see [13]) to reduce it to tridiagonal form in O(m) operations. In practical computa-
tions we have observed that, taking m 2n, the approximations are correct (at least
for our calculations).

In this way, we get an O(n 2) method to compute the required eigenvalues. We
have tested this method successfully with cubic splines. In this case, F becomes

(5.3) F

-6 4 -1
-6 4 -1
4 -6 4 -1

-1 4
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To calculate D, we use the values of to obtained by interpolation to the data

1 2(5.4) to(tT) ---’--"nn O in.
ndi

The interpolation performed is piecewise linear.
To illustrate the numerical behavior of the method, we show two tests realized

on artificial data. We use the test function f(t)=sin 27rt in the interval [0, 1]. We
calculate the data points using the relation

ti [ f./n to lo9 dt]
where to(t)= 1 +cos rt. Then, we introduce a noise in the values of the function at
t,..., t, by adding pseudorandom normal numbers N(0, (0.1)2). We do this for
n -40,100. The results are given in Figs. 5 and 6.

FIG. 5. 40 points.

FIG. 6. 100 points.
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6. A comparison with Reinsch’s method. Our purpose in this section is to
compare the method of GCV to Reinsch’s suggestion [11] from the point of view of
efficiency as defined by Wahba [19].

Define T. (-) as

(6.1) T.(-) -1 a(f(t’)-o-,(t’)).
ni=l

T, (’) is a "mean" of squared differences between the approximation o’,. and the true
function f. As is easily seen, T,(-) cannot be computed for a real problem. In [16],
we show that minimizing V, (’) is asymptotically the same as minimizing T, (-), and
we say that the GCV method is asymptotically optimal. This demonstration is based
on a conjecture by Craven and Wahba [5], and uses a bound on the eigenvalues
proved in [17] which will be published elsewhere.

Define now the inefficiency of an approximation by smoothing spline as

(6.2) I,,(’r)
min Tn ()"

This quantity is always greater than or equal to 1. The closer it is to one, the
better is the approximation of f, at least from this error criterion point of view. So,
to compare the two methods mentioned here, we use this parameter as the measure
of goodness. A more complete comparison appears in [17].

We chose a large set of test functions defined on [0, 1] and performed the
calculations as in the numerical examples of 4. The computations have been repeated
for various n and v. The results are given in Table 2. We observe that the GCV
method is best, followed by Reinsch’s method, but it is important to note that Reinsch
requires the knowledge of v 2, which is not always known.

TABLE 2

v 0.100
Method 20 40 60 100 150 200 300 400

GCV 1.596 1.285 1.046 1.032 1.045 1.048 1.104 1.105
REINSCH 1.560 1.254 1.099 1.830 2.565 3.036 3.160 3.231

v =0.050
Method 20 40 60 100 150 200 300 400

GCV 1.130 1.025 1.027 1.029 1.061 1.140 1.071 1.027
REINSCH 1.133 1.283 2.701 2.402 1.544 1.299 1.220 1.061

v 0.010
Method 20 40 60 100 150 200 300 400

GCV 1.648 1.518 1.015 1.030 1.030 1.040 1.012 1.013
REINSCH 1.054 1.896 2.049 1.168 1.124 1.086 1.728 1.575

v =0.005
Method 20 40 60 100 150 200 300 400

GCV 1.320 1.258 1.296 1.013 1.019 1.026 1.016 1.042
REINSCH 1.726 1.801 1.216 1.447 1.350 1.261 1.294 1.455
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ANALYSIS OF MEASUREMENTS BASED ON THE
SINGULAR VALUE DECOMPOSITION*
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Abstract. The problem of maintaining quality control of manufactured parts is considered. This involves
matching points on the parts with corresponding points on a drawing. The difficulty in this process is that
the measurements are often in different coordinate systems. Using the assumption that the relation between
the two sets of coordinates is a certain rigid transformation, an explicit least squares solution is obtained.
This solution requires the singular value decomposition of a related matrix.

Other topics in the paper include an appropriate angular representation of the resulting orthogonal
transformation matrix, and a computational algorithm for the various required quantities.

Key words, orthogonal matrices, singular value decomposition, orthogonal Procrustes problem, analysis
of measurements, quality control, part matching, least squares

1. Introduction. The following problem arises in the analysis of measurements
made on manufactured parts for the purpose of quality control.

A part is to be machined in accordance with specifications on drawings. To check
conformance of this part with the drawings, a set of distinguished points is taken from
the drawings and a corresponding set of points is taken from the part. If discrepancies
between the two sets of coordinates are all within tolerance, the part is acceptable.
Otherwise the part is deemed unacceptable and is discarded.

Discrepancies between the two sets of corresponding points can come from
inaccuracies in manufacturing the part, or inaccuracy in measurements with respect
to coordinate systems for the part or the drawing. Furthermore, it may be necessary
to measure the set of points on the part in a different coordinate system than the
points on the drawing. This introduces (possibly) large discrepancies between the
points on the part and the points on the drawing.

We will not discuss in detail the problem of where or how the distinguished set
of measurements should be taken on both the drawing and the part. This is a difficult
matter that involves judgment from the individual responsible for quality control of
the manufacturing process.

To salvage acceptable parts, one must account for the different coordinate system,
in the two sets of measurements. It seems plausible that (to within error whose effect
is negligible relative to tolerances) the coordinate axes of the set of drawings are
orthogonal. Also, errors in any measurements made on the drawings are similarly
negligible. One also expects that the measuring device, to within acceptable errors,
yields measurements relative to a set of orthogonal coordinate axes. However, in
addition to any intended change of coordinate system, the part undergoing the test
may be improperly positioned relative to the coordinate system of the measuring
device. This could result from some designated point on the part not being set at its
prescribed location or from the entire part being misoriented relative to the coordinate
axes. To accommodate these possibilities the relationship between the coordinate

* Received by the editors August 18, 1980. This work was sponsored by the U.S. Department of
Energy under contract DE-AC04-76DP00789.

" Numerical Mathematics Division, Sandia National Laboratories, Albuquerque, New Mexico 87185
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systems should have the general form of a rigid transformation

drawing points orthogonal matrix part points + fixed translation.

(This form of transformation also seems consistent with what one might do to fit two
parts together without forcing. In fact, one could consider one of the parts as the
"drawing." Then the transformation can be used to mate the two parts.) It is possible
to minimize this corresponding discrepancy between drawing points and transforms
of part points in the least squares sense. One can then base the accept or reject tests
on the residuals of these equations. Perhaps the most natural choice for an approxima-
tion criterion would be to minimize the maximum residual. No direct solution to this
"min-max" problem, with the simplicity of the solution for the least squares criterion,
is known to the authors.

Using least squares, it is possible to give a simple algorithm for computing the
(unknown) orthogonal matrix and the fixed translation of this transformation. The
expression for this orthogonal matrix involves quantities that derive from the singular
value decomposition (SVD) [1, pp. 238-239] of a related matrix. This is fully
developed in 2.

Section 3 outlines the computations to be performed and 4 discusses the
numerical analysis of the process and describes .a computer program. Section 5 presents
an appropriate angular representation for the transformation matrix. Although the
original problem was in two or three space dimensions (and it is difficult to contemplate
the problem in higher dimensions) the treatment in 2 and 3 is applicable to any
finite-dimensional space.

2. Analysis. In the following development the vectors are real, n-dimensional,
and are also considered as n 1 matrices. For our derivation of the optimal transforma-
tion, we use the functional

(M, N) -= trace (MTN).

For M N, this dot (or inner) product defines the Frobenius or Euclidean norm in
the linear vector space of rh x , real matrices. (Here MT transpose of M, and trace
(MTN) sum of the diagonal terms of MTN.)

The dot. product has a number of easily proved properties stated as (1)-(5). Those
properties allow for various formal interchanges in terms involving dot products of
matrices. These rules are used freely within this section.

()

(2)

(3)

(M, N)= (N, M),

(M,N)=(N:r, MT),
(MN, PQ)= (NQ, MTp).

In (3), the indicated products must be defined in order for this to make sense. Also,

(4)

(5)

(M, N +P) (M, N) + (M, P),

(M, aN) a (M, N) (aM, N)

for scalar values of a.

The set of drawing points and the set of part points are respectively denoted by
{ Yi 1 _-< _-< K} and {Xi 1 _-< -< K}. Since the coor.dinate systems for the drawing points
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Y and part points X are related by a rigid transformation we have

(6) Y AX + B.

In (6), the n x n matrix A is orthogonal, ATA I, while B is an n-vector.
Other authors have considered problems and used methods that are closely related

to ours. For example, Green [5], Bar-Itzhack [6] an.d especially SchSnemann [7] have
solved the problem of minimizing (A- , AX- Y) where X and I7" are N xK real
matrices and A is an NxN orthogonal matrix. Here we solve the problem of
minimizing (A" +Be7"- I7, A3" +BeT- I7") where ’, I7" and A are as stated above,
B is an N-vector, and determinant of A + 1. (The vector e (1, , 1)T.)

The use of the singular value decomposition of square matrices, as utilized in
this paper, simplifies derivations of the formulas for A and the required computations.
The methods we present also apply to the above-mentioned related problems where
A is only required to be orthogonal.

To obtain the best fit in the least squares sense, we want to minimize

K

f(A,B)= ., (B-(Yi-AXi),B-(Yi-AXi)).
i=1

This expression can be simplified by eliminating B as an unknown. To do this we use
Lemma 1.

LEMMA 1. If{Rill <-_ <- K} is a set of n-vectors, then & (R ,in= (R Ri, R Ri)
is minimized if and only if R =/ (/r= Ri)/K.

This lemma is easily proved by noting that, for all R, (R)=
K

.i=1 [(g-,g-)+(Ri-,gi-)].
For any specific choice of A, including the optimal value of A which we do not

know yet, Lemma 1 shows that f(A, B) is minimized with

(7) B B Y-AX,

where

and

i=l

Substituting this expression for B B into f(A, B) and defining the two sets of points
(each with mean zero)

(8) Xi-- Xi -X, Yi Yi Y, 1,. , K
leads to the expression

K

f(A, B) E (Axi Yi, Axi Yi).
i=l

We want to choose an orthogonal n n matrix A (possibly with the additional
restriction det (A)= 1), to minimize f(A, B). Using (1), (4) and (5),

K

f(A,B)= Y [(Axi, mxi)-2(yi, Axi)+(yi, yi)].
i=1
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An application of (3)-(5), together with the fact that A is an orthogonal matrix,
shows that

K K

f(A,B)=-2 E (yi, Axi)+ , [(xi, xi)+(yi, yi)].
i=1 i=1

Finding A to minimize ’(A, B) requires finding an orthogonal matrix that maximizes
tle related functional

K

g(A)= E (yi, Axi).
i=1

K
Again, (3) and (4) show that, with C=; yxr,

(9) g(A) ., (yxf, A)= yx.T,, A =--(C, A).
i=1 i=1

It is worthwhile to point out that the inclusion of weights in the definition of
f(A, B) adds no essential complication or change to the development given here. In
fact, if

K

2

then an obvious modification of Lemma 1 shows that

and

B=B= Y-AX,

? E Yi
i=1

X "/i ’/i.
i= i=

Equation (8) is still valid, and minimizing

K

f(A, B) F, y (Axi Yi, Axi yi)
i=1

is equivalent to maximizing

g(A) ( 2 )"yiYixTi,A (C, A).
i=1

Our point here is that the use of weights merely changes the computation of X,
Y and C in a trivial way. The arguments that follow remain unchanged.

To aid in the choice of A that maximizes g(A), we introduce the singular value
decomposition, SVD, of the n n matrix C,

1 O) C USVT.
In (10) the n x n matrices U and V are orthogonal. Further, the n x n diagonal

matrix S-diag (s,..., s.) has the singular values of C as its diagonal terms with
Sl >- s2 >=. >= s. >= 0. Substituting the SVD of C from (10) into g(A) of. (9) results in

g(A) (USVT, A)= (S, uTA V) (S, W),

where W UTAV {wii} is an n x n orthogonal matrix.
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We now consider two cases for the optimal choice of A. In the first case A may
be any orthogonal matrix, whereas in the second case A must also have determinant
equal to the value 1.

Case I. Determinant ofA has either sign. Since W is an n n orthogonal matrix,
each diagonal term satisfies [Wii[ 1, and thus

($, W)= Y sw, N s.
i=1 i=1

This inequality becomes an equality if and only if w, 1 for each s > 0. If r is
the number of nonzero singular values, then g(A) ($, W) is maximized precisely when

I

Here Z is an arbitrary (n- r)x (n- r) orthogonal matrix. In case r n the matrix Z
is absent, and then W L One is always free to choose W I for all values of r. This
is effectively the results obtained by Sch6nemann [7].

Case II. Determinant of A +1. The required condition is equivalent to
det (W)= det (UrV). If either det (UrV)= 1 or s 0, then the maximum of ($, W)
is

__
s. An optimal choice of W is the same as in Case I with Z essentially arbitrary

except for the requirement det (Z)- det (UrV). We will need the following lemma
for the remaining development.

LEMMA 2. SUppOSe that W is an n x n real orthogonal matrix with det (W) -1.
Then

(a) trace (W) tr(W) _<- n 2;
(b) tr(W) n 2 i[ and only i[

W P diag (1,. , 1, -1)Pr

or some n x n orthogonal matrix P.
Pro@ Partition the eigenvalues of W into three groups

(i) A , Xt,.. ", A., , (2p complex roots; IAI= 1),
(ii) 1,..., 1 (q roots, real and positive),
(iii) -1,...,-1 (r roots, real and negative).

Since det (W) IA]2... IA, I2(-1)r= (-1) =-1, we see that r is an odd integer with
r->l.

Using Theorem B.9 of [2, p. 285], we note that there is a real .orthogonal matrix
P such that pTWp is the direct sum of p individual 2 2 matrices

cos (Oi) sin (0i)
-sin (Oi) cos (Oi)]

and the scalar matrices Iq followed by -L. Each angle is a principal argument of
the complex eigenvalue Z of W, 1-<i<-p. Now computing tr (W)=tr (ppTw)=
tr (pTwp) shows that

p

tr (W) 2 E cos (Oi) + q r.
i=1

The facts that r >-_ 1, cos (O) <= 1, and 2p + q n r then show that

tr(W)<-n-2r<-n-2.

This completes the proof of part (a) of the conclusion. The "if" clause of part (b) is
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obviously true. To prove the "only if" clause of part (b), suppose that tr (W)= n -2.
This can occur only if r 1 and

p

2 , cos(Oi)+q=n-1.
i=1

The last of these equations says that p 0 and q n 1, so

PT"WP diag-(1, , 1, -1)

and the condition on W follows. This completes the proof of part (b) of the lemma.
Suppose then that det(UV)=-I and s,>O. In this case we show that the

maximum of (S, W) is = si-s and that W is essentially the matrix
diag (1,. , 1, -1).

To this end we write the inequalities

n--1 n--1

Si--Sn--(S W)-- Z (1--Wii)Si--(1 -t" Wnn)Sn
i=1 i=1

_-> Y (1- wii)s. -(1 + w.,,)s,,
i=1

[(n 2)- tr (W)]s,,

-_>0.

The first inequality here follows from the elementary fact that no entry of W
exceeds one, and that the nonnegative singular values, {s}, are ordered. The second
inequality uses Lemma 2, part (a).

Suppose now that equality holds throughout these relations. If ] is the smallest
index such that si s,, then equality holds throughout if and only if wii 1 for <
and tr (W)= n-2. Thus W maximizes (S, W) if and only if W =diag (/-1, Wn-j/l)
where Wn_j/l is orthogonal, det(W,_j/l)=-l, and tr(W,_i/l)=(n-/’+l)-2=
n -/’- 1. By Lemma 2, part (b), W maximizes (S, W) if and only if

Pdiag(1,..., 1,-1)Pr

for some orthogonal matrix P.
A particular choice of W that always results in the maximum of g(A) for Case

II is

W diag (1,..., 1, det (UrV)).
With this particular choice we can evaluate the orthogonal matrix

A UWVr

that maximizes g(A) or, equivalently, minimizes f(A, B).
The phenomenon of qll-conditioning" is present in the computation of A in a

subtle form. The dimensions of the arbitrary matrices Z and P of Cases I and II are
related to the multiplicity of the smallest singular value. If s is the only zero singular
value then the extra condition det (A)= 1 fixes the previously arbitrary scalar
orthogonal matrix Z. Multiple zero singular values may occur when a poor choice of
coordinate pairs are chosen on the part and drawing. This in turn may lead to
discontinuous dependence of the matrix A on the data in the sense that small changes
in the data yield large (but bounded) changes in the elements of A.
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A similar ty.pe of discontinuity could occur in Case II when sn > 0 is a multiple
singular value. These remarks should be considered with the disclaimer in the Introduc-
tion regarding the choice of a distinguished set of points. First, the pair {A, B} may
reduce the size of the residuals and hence be of value even when a large variation in
A may result from small variations in the data. Next, it is possible to evaluate the
choice of distinguished points under certain circumstances that we now describe.

Suppose the part is expected to match the drawing rather closely so that Xk is
close to Yk. One can take the matrix G based only on drawing points

K
TG ’. YkY k,

k=l

and obtain the singular values (= eigenvalues) of G. Let 8 be the minimum distance
between two singular values of G. Now C=G+H with H--,kL (Xk--yk)yT. If
[[H[I < 8/2 then the singular values of C differ from those of G by less than 8/2 and
.also are distinct, [1, p. 25]. Here I[" largest singular value.)

Should the choice of a distinguished set be a poor one on the basis of the
suggested evaluation, it might be possible to change to a completely different distin-
guished set or to significantly modify the matrix C by adding points to the distinguished
set. Such possibilities depend of course on the nature of the part and its intended usage.

Frequently a drawing for a part is in a different scale than the part itself. This
means that the set of part points {Xi} may be derived from a set of actual measurements
on the part {.ei}, by a scale factor, Xi a.,.i, i= 1,..., K.

To provide a check for consistency of these measurements, one can slightly extend
the type of transformation allowed, namely, a rigid transformation combined with a
change of scale, or

Y aAX+ B.

Here a >_-0 is a scale factor to be determined, A is orthogonal, and B is an n-vector.
The optimal value of a does not affect the optimal choice for A. We will not prove
this here, but one chooses A, as outlined above but using the data {} instead of {X}.

The optimal choice for a can be shown to be based on the quantity g(A)-
K

(Axi, yi) as follows"

/x(Xi,
Xi), 0,

Ol--

0, otherwise.

Now, for example, one can examine the size of both sets of residuals, 1 _-< _-< K,

and

Y-AX-B, B Y-AX,

Yi aAXi B, J -aA..
This consistency check on the scaling of measurements can catch the following

type of blunder" A part is manufactured half as large as the drawing scale when it
should have been twice as large as the drawing scale.

Incidentally, it is not necessarily true that the residuals using a will be smaller
than the residuals with c 1. What is true, of course, is that the sums of squares of
residuals is not larger with the optimal a than with a 1.
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Monitoring of the value of a can provide information of potential use for process
control. If a is usually significantly above (below) unity, then there is probably a bias
in the process. If in addition, the residuals using the optimum value of a are significantly
smaller than those for a 1, then there is possibly a removable source of error in the
process.

3. Computational steps. The given data are the set {Yi} of drawing points and
the set {Xi} of part points. An algorithm is outlined for determining the orthogonal
matrix A, the n-vector B, and the optimum scale factor, a.

Step

1.

10.

11.

12.

Operation

Compute the means-- (i----1 Yi)/K, -e--(/= Xi)/K.
Compute the differences

yi=Yi-Y, xi-Xi-X, i=I,...,K.

Compute the matrix

K

C xiyT.
i=1

Compute the SVD of C,

C USVT.
Compute the product uTv.
Compute the value

cr det (uTv).
Compute the orthogonal matrix

A U diag (1,. , 1, tr) Vr.
Compute the points Axi and yi, 1,..., K.

Compute the scalar g -,i (Axi, yi).

Compute the optimum scale factor a"

1,0, otherwise.

Compute the translation vector

B Y-AX.

Compute the residuals

ri Yi-Axi, 1,. , K
(= Yi AX B).
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Following Step 12, the components of the residual vector ri are checked for size.
If they are all smaller in magnitude than a specified tolerance, the part is accepted.
Otherwise the part is rejected.

The optimum scale factor can be used to generate another set of residuals
Yi-oAi-, where/ I7- ceA’. These components should usually be smal-

ler in magnitude than the specified tolerance for acceptance of the part. The (rare)
situation may occur where some r] are larger than the corresponding ri. In the case
where the ri are within tolerances but the r] are not, it seems that the part should still
be accepted. Our justification for this statement is that the user of this analysis (most
likely) has the two sets of points in the same scale, yielding residuals r. Thus some
rigid transformation of one set of points to the other has been shown to exist with
sufficiently small tolerances. This is, we think, the important point behind this type
of analysis in the first place.

4. Numerical analysis. In 3 the main steps of an algorithm are given that allows
one to compute the orthogonal matrix A, the vector B, and the scalar a of the
transformation Y aAX /B. The computation of A, B and the residuals YI-
(AXI / B) are done in the provided subprogram MAP(. for the special cases of n 2
or n 3. Each of these steps is straightforward with the exception of Step 4. In that
step the SVD of an n n matrix C is required. For general values of n, one can use
the Golub-Reinsch algorithm as implemented in subroutine SVDRS(.), [1, p. 250].
However, as we noted in the Introduction, this particular problem is most likely to
occur for values of n <_-3. For tis reason a special and succinct version of the
Golub-Reinsch algorithm was written for a 3 3 matrix. This subroutine, SVD3B3 (.),
is called by MAP(. and implements that algorithm in this special case. By avoiding
the most expensive loops and using plane rotations computed by SROTG (.), [3, p.
314], for all the elimination steps, a robust and efficient code was obtained. The
exclusive use of SROTG(.) was made because of the few elimination steps required
for a 3 3 matrix. This version of the SVD for 3 3 matrices is at least a factor of
five times faster than SVDRS (.) using the CDC 6600 computer. The package of
subroutines and a sample test program are available directly from the authors. The
primary subroutine of the package is MAP (.). This subroutine accepts data triples
{Xz} and { Yz} as input and returns the matrix A and the vector B, and the residuals
Rg Yt AXt B as output. There are approximately 796 card images in this package.
The program units are all written in highly portable Fortran. We believe that it can
be used on most computers that support Fortran, with no changes required. It is
anticipated that the primary interest in this package is with MAP (.). The usage
instructions for this subroutine are as follows.

The user must have the following declaration statement in a program that calls
MAP (.):

DIMENSION X(3, K), Y(3, K), R (3, K), A(3, 3), B(3).

Assign values to K, X(*, *), and Y(*, *) and execute the subroutine call

CALL MAP (K, X, Y, R, A, B).

The parameters in the calling sequence fall into two classes" Input and Output.
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Input
K, X(3, K), Y(3, K) The integer K contains the number of triples of points, {Xx} and

{Yx}. The arrays X(3, K) and Y(3, K) contain the X and Yt,
respectively. The first coordinate of Xz is stored in X(1, I); the
second is stored in X(2, I); the third is stored in X(3, I). The
same convention holds for Yz. (Note that for n 2 variables,
the third coordinate of both the Xx and Yz should be fixed at
the same value, say zero.)

Output
R(3, K)

A(3, 3), B(3)

The residuals Rt Yt-AXz-B are returned in the array
R (3, K). The coordinates of Rx are stored in the same conven-
tion as the coordinates of the Xt and Yz.
The optimal orthogonal transformation matrix, A, and transla-
tion vector, B, are returned in the arrays A(3, 3) and B(3). The
transformation has the form Y AX + B. The elements au of
A and the entries bt of B are returned in A(L J) and B(I),
respectively.

As an illustration of the process we used MAP (.) to compute A and B from a
set of data for both {X} and { Y}.

TABLE
An example, for n 3, computed using MAP (.).

1000 x (R, Yr-AXr-B)

0.99962512 1.0 -0.82456
1.00049650 1.0 0.28771
0.99903218 1.0 -0.23266

0.99837196 1.0 0.93430
0.99947869 1.0 -0.17797

2 -1.00200510 -1.0 0.80444

-1.00184080 -1.0 1.39634
-1.00025510 -1.0 0.28408

3 1.00015700 1.0 -0.38086

-0.99843296 -1.0 -1.50609
-1.00105830 -1.0 -0.39382

4 -1.00003210 -1.0 -0.19092

--F0.99999990 0.00037760 0.00025253JA" [-0.00037741 0.99999965 -0.00074112

-0.00025281 0.00074102 0.99999969

B: 0.00056948 0.00033381 0.00071211

5. Angular representation of the orthogonal matrix A for n 3. Occasionally
one needs to represent a 3 3 orthogonal matrix as a product of plane rotations or
by the angles of these rotations. In a sense, the 3 3 9 pieces of data can be
represented with just three pieces of data. (Often machines are manufactured so that
achieving a rigid coordinate transformation can only be done by rotating about one
coordinate axis, then another, etc.) It seems to the authors that there are compelling
reasons to suggest that the use of Euler angles [4, p. 259-270] is the wrong approach
for representing a broad class of orthogonal matrices. Briefly, the Euler angles are
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derived from the three plane rotation matrices that diagonalize the orthogonal matrix
A, determinant of A 1. The ci cos (0i) and si sin (0), 1, 2, 3. First, Cl and S

are chosen to eliminate the entry at the intersection of row 1 and column 3 of A.
This rotation is applied to A to form the matrix product R1A. Next, c2 and s2 are
chosen to eliminate row 2, column 3 of R1A. This rotation is applied to RIA to form
the product R2R1A. Finally, c3 and s3 are chosen to eliminate row 1, column 2 of
R2RIA. The product R3R2R1A is the identity matrix by virtue of the fact that the
R and A are orthog0nal, and determinant of A 1.

The central problem with this representation for A in our application is that the
angles 0 may not depend continuously on the data. This is true because typically
A- Identity matrix +small terms. These small terms uniquely determine the Oi, but
an arbitrarily small change to these terms can make a change in the 0 as much as 2zr.

$3 ilI 0 0 I Cl._.oS S1 il IaalX a12 a131 I1 0 0il3 c3 c2 $2 Cl 21 a22 a23 0 1
0 --$2 c2 0 la31 a32 a33 0 0

FIG. 1. Deriving Euler angles from an orthogonal matrix.

I 1I2 Jl 01Ia a12 a13/ Ii0il1 0 0 Os2FcISI 11

0 alc3 s3 1 0 -sl cl a22 a231 1

-s3 c3 L.-s2 0 c2 0 0 1 31 a32 a33A 0

FIG. 2. Deriving stable set of angles from an orthogonal matrix.

Our suggestion for a set of angle coordinates for A in our application is based
on triangularizing A as shown in Fig. 2. The first plane rotation is chosen to eliminate
row 2, column 1. This plane rotation is applied to A to form P1A. Next, the second
plane rotation is determined that eliminates row 3, column 1 of P1A. This is applied
to PIA to form P2PIA. Finally, the third plane rotation is applied to eliminate row

DTDTDT3, column 2 of P2PIA. This yields the (continuous) representation A =-1-2-3.
The principal angles 0 satisfying ci cos (0i), s sin (0i), 1, 2, 3 are determined

using the two-argument arctangent function. This elementary function is available in
most Fortran systems as ATAN2(., .). One can also use the idea of Stewart [3, p.
314] to essentially store just one number for the pair (cg, s), 1, 2, 3. This is equivalent
to storing the angles Oi, but it avoids computing the arctangent, sine and cosine
functions to reconstruct the rotation matrices.
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SOLUTION OF HOMOGENEOUS SYSTEMS OF LINEAR
EQUATIONS ARISING FROM COMPARTMENTAL MODELS*

R. E. FUNDERLIC AND J. B. MANKINd"

Abstract. Systems of linear differential equations with constant coefficients, Ax , with the matrix A
having nonnegative off-diagonal elements and zero column sums, occur in compartmental analysis. The
steady-state solution leads to the homogeneous system of linear equations Ax (oo)=g (oo)=0. LU-factoriza-
tion, the Crout algorithm, error analysis and solution of a modified system are treated.

Key words. M-matrix, homogeneous linear system, compartmental model, queueing networks,
LU- factorization, tracer methods

Introduction. The mathematical theory of systems of linear, ordinary differential
equations with constant coefficients was applied to tracer experiments to explain and
analyze data consisting of concentrations in various organs [13], [14], [16], [19].
Mathematically, this corresponds exactly with the compartmental models later applied
in ecology [9], [10], [11]. O’Neill [12] presented a survey paper on the use of
compartmental models in ecology, and he dates their initial applications from about
1960.

A compartmental model is one in which the system is conceptualized as being n
distinct, interconnected compartments between which usually either mass or energy is
transported. Ideally, the compartments are assumed to be homogeneous and uniform
with no internal gradients, but, in reality, all that is necessary is that the modeler
conceptualize them mathematically as distinct.

A fundamental aspect of the model is the form of the transfer function between
compartments. O’Neill [12] reviewed the conditions under which such transfer
functions reasonably represent real systems. We will confine ourselves to the usual
transfer functions that are a linear combination of the state variables. With this
assumption, the dynamics of a compartmental model can be expressed by a system of
first-order linear ordinary differential equations with constant coefficients.

The increase of atmospheric carbon dioxide as a result of increased fossil fuel
combustion has stimulated the development and study of global carbon models. Many
of the models of the carbon cycle are formulated as closed systems. A closed system is
one in which there is no flow of mass across the boundaries of the system. In other
words, the amount of mass within the system remains constant. This means that many of
the carbon models may be considered as described by the following set of linear,
ordinary differential equations with constant coefficients:

(1) Ax, x (to) Xo,

where the elements of x represent concentrations of carbon in a compartment, e.g.,
troposphere, and the elements of the matrix A represent the transfer coefficients from
one compartment to another. The solution of the steady state of this system then
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amounts to solving the homogeneous system of linear algebraic equations:

(2) Ax O,

which has a nontrivial vector solution x if and only ifA is singular (i.e., det A 0). Since
the system is closed, the elements of the matrix A obey the following relationships:

(3) aij >-0, #], aii , aji, i=l, 2,..-,n.

That is, the column sums of A are zero and therefore A is singular. Matrices with
properties (3) will be called compartmental matrices or C-matrices [or brevity. A more
thorough derivation of the differential equation and a discussion of many of the
fundamental properties of C- matrices are given in [3]. The negative of a C- matrix is in
the class of M-matrices. A frequently used definition of an M-matrix is that its
off-diagonal elements are nonpositive and the real parts of the eigenvalues are
nonnegative. A comprehensive exposition on M-matrices has been given by Berman
and Plemmons 1]. The conservation property of C-matrices

(4) . x,(t)=c (a constant),
i=1

is assumed for all time, t. The problem, then, is to solve (2) for the state variables at
steady state.

Reduction to irreducible systems. A compartmental system is said to be irreduc-
ible if there is a way, perhaps indirectly, for "material" to flow from each compartment
to each of the other compartments. Compartmental matrices associated with irreduci-
ble systems are thus irreducible, and have rank one less than their order [2]. The system
on the left in Fig. 1 gives rise to an irreducible matrix; the one on the right does not,
since, for example, material does not pass from compartment 1 to compartment 3.

2

4

(a) (b)

FIG. 1. Irreducible (a) and reducible (b) systems.

If a system is reducible, then there is a permutation of the labels of the compart-
ments of the system that gives a matrix of the form

11 A12 Alp’]
A2p

where the diagonal submatrices Aii are square and either irreducible or zero matrices of
order one (e.g., Berman and Plemmons [1, pp. 34-48]). Except for extremely large
systems, there is good computer software [6] to effect this reduction. This report will
assume that the matrices under consideration are irreducible C-matrices.
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If all the submatrices above the diagonal blocks in (5) are zero, then the cor-
responding physical system is made up of p completely independent subsystems. The
case of nonzero submatrices above the diagonal blocks is best described by an example.
If a system is as in Fig. 2, then the steady state of the system will be solved by a system of
equations of the form

(6)

* * 0 0 * 0 x 0;, ooo
0 * * 0 X3
0 * * 0 ! !0 0 0 *
0 0 0 *

where the *’s indicate nonzeros. Thus

IxA33
6

can only have the solution x5 x6 0, and only two systems of order 2 need be solved to

provide a steady-state solution for the physical system in Fig. 2. This simple example
shows the importance both physically and computationally of determining, if reason-
ably possible, the reducibility of the physical system.

FIG. 2. A reducible system in which compartments 5 and 6 will empty.

LU-decompositions of compartmental matrices. It is well known that the solution
of general linear homogeneous systems is usually more difficult [5], [8] than that of
nonsingular systems. However, the solution of irreducible compartmental systems will
be shown to be relatively easy.

Singular irreducible M- matrices, A, have LU- decompositions such that L is lower
triangular and U is upper triangular (Kuo [7] and cf. Berman and Plemmons [1, p.
157]). Furthermore, ln,unn 0, and L may be chosen as a nonsingular M-matrix. This
shows that irreducible C-matrices have LU-decompositions. An alternate proof to
Kuo’s result is given here and it is shown that for a C- matrix A, L or U can be chosen as
a C- matrix.

The existence of LU- decompositions for irreducible C-matrices is illustrated here
by a system of order four. Let

-ai b c d
a -,bi c2 d2
a2 b2 -ci d3
a3 b3 c3 -Edi
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Dropping the subscript from sums the first Gauss step [15] uses an elementary
triangular matrix with first column

a2/a
a3/a

There is no loss in generality and it simplifies the algebra to scale the elementary matrix
by a. Thus

That is,

a
al

a3

M1A

where A’ is an irreducible C-matrix. The irreducibility of A’ follows because, other-
wise, the expressions for the elements of A’ would imply the matrix A to be reducible.
Thus for general n-compartment irreducible systems, Gaussian elimination can be
carried out on the successive A’ submatrices without row interchanges. Finally, the A’
matrix of order two will be reduced to a matrix with last row zero.

If a matrix has an LU- decomposition, andD is a nonsingular diagonal matrix, then
(LD)(D-U) is another such decomposition. This allows the choice of ones for the
diagonal elements of U and thus irreducible C-matrices have LU-decompositions
(illustrated for order four) of the form

(7) LU

/ll 0 0 0 1 * * *

* /33 0 1
* * 144 0 0 0 Ignn

where l,,,,u,,,, O. With this restriction, any convenient choice for l.. and un, may be
made. The same type of argument gives an alternate proof to Kuo’s proof [7] that
M-matrices have LU-factorizations of the form (7). Deletion of the last column of L
and the last row of U gives what is called a full rank decomposition of A, i.e., the
columns of L and those of U" are each a set of linearly independent vectors. The choice
ln 0 and consideration of this full rank decomposition of A lead to a proof that L is a
C-matrix. The next paragraph shows this.
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Let LU be a full rank decomposition of an irreducible C-matrix as developed in
the last paragraph, and let e be a column vector with all ones, Then since A is a
C-matrix, e7,A 0 or U7, (LT,e)-0. Since UT, has linearly independent columns,
Le 7- 0. Thus the column sums of L are zero. The first Gauss step and the obvious
induction show that the elements above the diagonal of U are nonpositive and those
below the diagonal of L are nonnegative. Thus if L is again assumed square of order n
and if l,, is chosen as zero, L is a C-matrix.

The standard uniqueness theorem (e.g., Stewart [ 15, pp. 132-133]), for nonsin-
gular LU-decompositions is easily modified for the rank n- 1 C-matrices under
consideration. Let L1U1 be an LU-factorization of a C-matrix A as in (7) with L1
nonsingular. Then let L2U2 be any other LU-factorization of A. Then L-IL2 is lower
triangular and

Ui L-iLzU2

is upper triangular. This implies that L-IL2 is a diagonal matrix D with nonzero
diagonal elements, except for possibly the n, n element. Thus anLU-factorization of an
irreducible C-matrix is unique up to a diagonal scale factor, i.e., L2 =LiD and
Vl =DUE.

Conversely, suppose a matrix A has an LU-decomposition with rank (L)-
rank (U) n 1, l,n un, 0, L a C- matrix and U an M- matrix. One might expect
that LU is a C-matrix. The following example shows this not to be the case:

1 -3 2-c 1 -2 0 0 1
1 1 -(2+c) 1 2 0 0 0

In this example, c must be between zero and two for the LU-decomposition to be a
C- matrix.

In summary, despite the singularity of irreducible C-matrices, they have LU-
decompositions. The singularity is always characterized by l,,,,u,,,, O. Other than this
arbitrariness and the scaling of the diagonal elements of U, an LU-decomposition is
unique. If the diagonal elements of U are chosen positive, L is a C-matrix and in any
case its column sums other than the last are zero. If un, is chosen as zero, then the system
Ax 0 can be solved by solving the equivalent triangular system Ux O. This will be
discussed in the next section.

A simple stable method for homogeneous compartmental systems. Given an
irreducible C- matrix, it was shown in the last section that there is an LU- decomposition
such that L is nonsingular and U has ones on the diagonal except for un, 0. The Crout
algorithm (e.g., Stewart [ 15, p. 135]), without pivoting will give this LU- decomposition
because no diagonal zeros occur until the last step. The algorithm is particularly simple
to implement. The two steps in Algorithm 1 are carried out for k 1, 2, ., n- 1.

ALGORITHM 1. Crout for Irreducible C-matrices.

k-1

L: aik <’" aik aimamk,
m=l

i=k,k+l,...,n,

U’akj<--a akj-- ak,,,a,,,,
m=l

j=k+l,...,n.
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After the two steps in Algorithm 1 are carried out, the original C-matrix A will
have been overwritten by the elements of L and the elements of U above its diagonal.
The diagonal elements of U, except for u,,, are implicitly assumed to be one, and l,,
being an arbitrary nonzero number is not calculated. The back substitution to calculate
the solution vector x to Ax 0 can start with x, 1 and then the vector must be scaled
to conform to the conservation property, c. Algorithm 2 assumes U has been
calculated by the Crout algorithm (Algorithm 1).

ALGORITHM 2. Back Substitution for Ux O.

Xn=l

xi Z aqx,;,
j=i+l

i=n-l,n-2,...,1

a =c xi

Xi <" axi, 1 2, , n

It was shown in the last section that the elements of U above the diagonal are
nonpositive. Thus, from the second line of Algorithm 2, the components of the
steady-state vector x are all nonnegative. Fiedler and Ptak [2] have shown that such a
vector has strictly positive elements and the strict positivity follows from irreducibility.

To say a computer method is stable (e.g., Stewart [ 15, pp. 75-78]), is to say that the
calculated solution is the actual solution to a problem close to the original problem. It is
often necessary and often helps stability if row interchanges are performed to solve
systems of equations (e.g., Stewart, [15, pp. 137-138]). For C-matrices, the ordering
determined by row interchanges is precisely that given by no interchanges. The analysis
to show that the Crout algorithm is stable for diagonally dominant matrices was done by
Wilkinson [18] (also cf. Wendroff [17, pp. 122-123]). Wilkinson’s analysis holds for
irreducible C-matrices. Thus if is the calculated solution on a t-digit decimal
computer to a n-compartment system Ax 0, then there is a matrix E such that

(A +E) 0,

with the elements of E bounded:

(8) leql <=np (max la,l)10-’,
where p is of order unity. It should be noted that A +E is singular since the back
substitution is started with un, 0. The factor n in (8) may be eliminated ([18], cf.
Stewart [15, p. 153]) if the inner products in Algorithm 1 are accumulated in double
precision.

The solution of a modified system. Often the elements of a C- matrix are not well
determined, or changing the coefficients is desired for other reasons. Thus it is
important to have a cheap way to obtain the solution, x ’, to a modified system A’x’ O.

More formally if r is subtracted from an element aq and added to a# with r -<_ aq so
that A’ is a C-matrix, then

A’:A --o’(ei --ej)e.
where ek is a kth unit vector, i.e., one as its kth component, zeros elsewhere.

The update method developed here is essentially the Sherman-Morrison method
[ 15] for nonsingular systems. A necessary condition for this singular version is that the
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difference of unit vectors be in the column space of any C-matrix. The following
argument shows that containment to be true.

If a vector is in the column space of A, then it is of the form aiai where ai are the
columns of A such that e Tai 0 where e is a column vector of all ones. Thus the set

(9) {w: erw 0}

contains the column space of A, and clearly is a subspace with dimension one less than
the order of A. Therefore the set (9) must be the column space of A, i.e., the column
space of A is the set of all vectors orthogonal to the vector e.

From an LU-decomposition of A, the system

Az LUz e -e
can then easily be solved in two steps: (a) solve Lq e-ej, (b) Uz q. This requires
much less work than solving Ax 0 since L and U have already been calculated. A
vector x’ satisfying A’x’ 0 may be expressed in terms of the vectors x and z

(10) x’- x -[oxj/(o-z 1)]z, rz 1 # 0.

Since

(11) A’z (1 -o-z)(e -e),
it suffices to choose x’ z, if (rz 1 O.

If the same i, ], element of A’ is to be further modified, then from (11)

(1 O’Z.i )- Iz
may take the role of the new z.

The solution vector x’ given by (10) is not zero, for if it were, then

But in this case since Ax 0,

a contradiction.

(rz 1)x o-xz.

Az 0 e e,

Other types of modifications for both C- matrices and more general matrices will be
considered in future work with R. J. Plemmons and G. H. Golub.

Examples. If

then an LU-decomposition for A is

-5 0
1
0

Algorithm 1 overwrites the matrix A with

9
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If the sum of the components of the steady-state solution x is assumed to be one, i.e.,
c 1, then Algorithm 2 gives x 7- (2, 2, 2).

An example from the ecological modeling literature [4] is illustrated in Fig. 3. The
relevant C- matrix is

0.08827 0 0 0
0.5000 -0.47047 0.05682 0.08123 0

0.19110 -0.05682 0 0
0.19110 0 -0.11779 0.001198

0 0 0.03656 -0.0011981

An LU-decomposition computed for A had

-00 5000.5000
0
0
0

0 0 0 0
-0.3822 0 0 0
0.1911 -0.02841 0 0
0.1911 0.02841 -0.03656 0

0 0 0.03656 1

and

1 -0.17654 0 0 0

i 1 -0.14867 -0.2153 000 1 -1.4296
0 0 1 -0.03276

1kO 0 0 0

STRATOSPHERE

TROPOSPHERE

OCEAN
SURFACE

OCEAN
DEEP

FIG. 3. A carbon model.
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The matrixA was overwritten byL and the elements above the diagonal elements of U.
The ann element, however, does remain unchanged. The sum of the coefficients of the
solution vector, i.e., c, was assumed to be 41145.6 as in [4]. This resulted in a solution
vector calculated as

x T =(92.34, 523.04, 1759.12, 1230.49, 37551.61).
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CONDITION NUMBER ESTIMATION FOR SPARSE MATRICES*

ROGER G. GRIMESf AND JOHN G. LEWISf

Abstract. The LINPACK package of linear equation solving software provides a reliable and inexpensive
algorithm for estimating the condition number of a dense matrix. The direct generalization to banded or
sparse matrices is reliable, but not necessarily inexpensive. The simple modification described in this note can
bring the cost of the algorithm back to a reasonable level.

Key words, matrix condition number, sparse matrices

1. Introduction. The most common estimate of the stability of the computation of
the solution to the linear system, Ax b, requires knowledge of the condition number
of A with respect to inversion,

This paper is concerned with reliable and efficient a posteriori estimates for this
condition number.

Systems of linear algebraic equations are usually solved by computing an LU
decomposition with some form of reordering. Cline, Moler, Stewart and Wilkinson [ 1]
discuss an algorithm which uses the LU decomposition to compute an estimate of the
condition number K I(A). (See [6] for a simple modification to improve the accuracy of
the condition number estimate.) Their algorithm may be summarized as follows:

1. Select a vector b of + l’s and -l’s so as to locally maximize growth in the
accumulated row sums for the solution of w where UTw b.

2. Solve: L7" x w; Ly x; Uz y.
3. Then a(A)llAlla Ilzll/llxlla.
This algorithm is used in all the condition number estimation subroutines of

LINPACK [2] with an implementation designed to work for large classes of problems.
Particular care has been taken to avoid problems when the matrices and/or the
condition number estimate include numbers near the overflow level of the computer.
The vectors involved in the algorithm are chosen to show large growth. In order to
prevent this growth from causing overflows, the LINPACK subroutines scale the
current solution vector (w in Step 1, x, y, and then z in Step 2) whenever the magnitude
of a component of the solution vector in the forward or back substitution grows larger
than one. The scale factor is chosen to reduce that component to be of magnitude one.
The LINPACK code also scales the solution vector to unity in the 1-norm after solving
each of the four triangular systems. This latter scaling causes a significant reduction in
the frequency of scaling during the following solution steps, but does not eliminate
intermediate scaling altogether, nor does it affect the number of scaling operations
performed in solving the initial special triangular system. In the discussion which
follows, the work of scaling shall refer only to the intermediate scaling operations (to
Chebyshev norm unity), and not to the scaling performed after a triangular system has
been solved.

Scaling adds to the cost of the algorithm. In the worst case the scaling procedure
might require 4n2 multiplications. This is inconsequential compared to the cost of
factoring a dense matrix, but scaling can dominate the cost of computing the LU

* Received by the editors December 15, 1980, and in revised form April 27, 1981.
5" Energy Technology Applications Division, Boeing Computer Services Company, Mail Stop 9C-01,

565 Andover Park West, Tukwila, Washington 98188.
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decomposition of a banded or sparse matrix. In this note we propose a modification
to the LINPACK implementation which reduces the frequency of scaling. The
modification preserves the robustness while reducing the cost of scaling. A problem
dependent bound on the cost of scaling which can be much less than O(n 2) is given in the
appendix. The modified algorithm has been implemented in subroutines to estimate the
condition number of matrices factored in either a symmetric envelope format or a
symmetric general sparse format, in addition to the dense and banded formats of the
LINPACK codes.

2. Reduction of scaling operations. The LINPACK codes provide for scaling the
"solution" vector in solving any of the three ordinary triangular systems, whenever the
next component to be determined has magnitude greater than one. Scaling will occur in
the special initial triangular system if the larger of the two possible outcomes has
magnitude greater than one. When scaling is required, the current vector is scaled so
that its largest component (the current component) has magnitude reduced to one. This
can cause frequent scaling by numbers of magnitude near one. An extreme example of
frequent scaling is illustrated by the diagonal matrix D diag (d 1, d2, ,dn), where
d 1 for 0 < 8 << 1. For any n, the LINPACK codes will scale n times performing
a total of n 2 multiplications. Example A3 in Table 1 below requires more than 2n 2

additional multiplications. The maximum work for scaling is clearly 4n 2.
Scaling is necessary for computational reliability since preventing the current

component of the solution vector from growing larger than one reduces the likelihood
of overflow. But scaling should provide some significant reduction in the size of the
numbers encountered. The role of scaling is to prevent overflow without causing undue
loss of accuracy in (small) components already computed. We propose that the scale
factor should have magnitude bounded away from one and that the scale factor always
be taken to be the smaller of the LINPACK scale factor and some number 3/less than
one. The LINPACK codes can be changed to incorporate this feature by altering four
lines in each of the condition number estimation subroutines. Each appearance inside a
DO loop of the code represented by

IF (...) GO TO...
S "scale factor"
CALL SSCAL (N, S,., 1)

should be changed to read

IF (...) GO TO...
S AMIN1 (% "scale factor")
CALL SSCAL (N, S,., 1).

The scalar 3’ should be chosen to avoid loss of accuracy. After some experimentation
the authors settled on 3/--.001 which effectively reduced the number of scaling
operations while preserving accuracy in the estimate of the condition number on a
computer with a wide dynamic range. The use of a reciprocal power of the machine
radix may have minor advantages and a choice of 3/= .5 will provide a bound on the cost
of scaling without significantly reducing the robustness of the algorithm for limited
dynamic range computers. For the matrix D described earlier a scale factor of .5 reduces
the number of scaling operations from n to 1.

3. Timing comparisons. We modified LINPACK subroutine SPBCO (single pre-
cision positive definite symmetric banded linear equation factorizer and condition
number estimator) to demonstrate the effect of the changes suggested above. Test
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matrices were selected from two areas. The first was a set of parameterized problems
chosen from Gregory and Karney [4]. These three problems have the form

2 -1
-1 2 -1

-1 2 -1
-1
2

-1

3 -1
-1 3 -1

-1 3 -1
-1

5 -4 1
-4 6 -4 1

A3 1 -4 6 -4 1

1 -4 6 -4

1 -4 5

These parameterized problems were tested with n 500, 1,000, and 2,000. The
remaining two test matrices were chosen from a set of stiffness matrices from dynamic
structural analyses. These last two matrices had order 203 and 396, with half bandwidth
21 and 112 respectively.

Table 1 displays the results of the testing with y 1, .5, and .001. The timings given
are in seconds. The factorization time (performed by SPBFA) is given separately from
the time spent in estimating the condition number. The number of scaling operations is
given in parentheses following the execution time. These tests were performed on a
CDC CYBER 175 computer using the FTN 4.8 compiler (OPT 2) under the NOS 1.4
operating system.

TABLE
Timing results

Test
Problem

A1

/k4

A5

N

5OO
1,000
2,000

5O0
1,000
2,000

5O0
1,000
2,000

203

396

Condition
Number

1.00x 105
4.01 x 105
1.60 x 106

5.00
5.00
5.00

1.03 x 101
1.65 x 1011
2.62 x 1012

7.07 x 1012

2.15 x 106

SPBFA*
Time

.011

.021

.041

.011

.021

.041

.020

.040

.075

.141

2.376

SPBCO Timings*
y 3’ .5 3’ .001

.102(499)

.309 (999)
1.051 (1999)

.045(1)

.087 (1)

.178(1)

.221 (1409)

.734 (2853)
2.699 (5769)

.052 (17)

.272 (16)

.044 (8)

.090 (9)

.180(10)

.045(1)

.087 (1)

.178(1)

.053 (40)

.104(45)

.202 (50)

.05 ! (12)

.270 (12)

.043(1)

.088 (1)

.177 (2)

.045(1)

.087 (1)

.178(1)

.049 (5)

.093 (7)

.191 (7)

.051 (7)

.267 (5)

* Timings are given in CPU seconds on a CDC CYBER 175 computer using the FTN 4.8 compiler
(OPT 2) under the NOS 1.4 operating system. The number of scaling steps used in SPBCO is given in

parentheses after the actual execution time.
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Problems A1 and A3 demonstrate the significant savings which can accrue from
reducing the frequency of scaling operations. The remaining problems show only small
savings in execution time. As indicated by these results the proposed modification to the
LINPACK implementation of the Cline, Moler, Stewart and Wilkinson algorithm
offers substantial savings in execution time for some problems without a loss of
portability or accuracy and with no increase in storage requirements.

4. Appendix. We present here two theoretical results which show that our
modification to the LINPACK algorithm can never result in more work and which
give a bound on the work needed which can be much less than 4n 2.

Both results view the LINPACK algorithm as the successive solution of four
triangular linear systems:

U w b, w/llwll ,

x/llxlll,

Y/IlYlI1,

Each of these steps will be viewed as the solution of

TB v
where T is a triangular matrix.

THEOREM 1. The modified algorithm performs a scaling on the solution vector at the
k th step of solving Tu v only if the original algorithm does also.

Proof. Let P. be the accumulated product of scale factors for the first j steps of the
original algorithm, and similarily define for the modified algorithm. Let u (1),
u (2),..., u (") be the components of the solution without scaling, in the order deter-
mined. The original algorithm rescales the solution whenever Pj-1 < [u()[ and sets
Pj [u ()l" Clearly

Pk max max ([u ()[), 1).
j=l, ,k

The modified algorithm rescales the solution whenever/5_1 < [u (i)[ and sets/j _-> lu (i].
Thus

/ _-> max max (I u()l), 1),
j=l, ,k

and so k >--Pk. Since the modified algorithm only rescales whenever/]-1 ( u (J)l, it
follows from the fact that Pk >----Pk that the original algorithm must also rescale at this
point.

THEOREM 2. The number of multiplications performed in rescaling by the modified
algorithm is bounded above by the smaller of 4n 2 and

S./(A) n. (max (log(i/v)IIL-’II + 2, O)

+max (log(I/v)I[U-I[[ - 2, 0)),

where we assume that A LU is nonsingular.
Proof. The solution at each of the four steps has the form u T-iv, where T is

triangular and Ilvll --< 1, Clearly II lloo --> 1/y)s- 1, where s is the number of rescaling steps
taken. It follows that

s _-< max (log(I/v)Ilulloo + 1, 0).



388 R. G. GRIMES AND J. G. LEWIS

The bound Sv (A) follows by applying standard norm inequalities to each step of the
algorithm. First,

so

Second,

so

Next,

and hence

Similarily,

and hence

Ilwll IIu- IIllblloo [Iu-

S --<max (log(I/v)IIA-II / , 0).

Ilxlloo L- I11111oo IlL-

s2-<max (log(I/v)IIL-1I[1 + 1, 0).

s3 ----< max (log(I/v)I[L-1[[1 + 1, 0).

Ilzll Ilzll IIu-11111111 IIu-1111,

S4-< max (lOg(l/v)[[U-1I[1 + 1, 0).

The bound Sv(A) is obtained by taking Sv(A) s "[" S2 -[-S3 "[" $4.

We note that both Sv (A) and the actual number of rescaling operations vary when
A is multiplied by a scalar.

5. Acknowledgments. This work was part of the GT-STRUDL LANCZOS
project within the Energy Technology Applications Division of Boeing Computer
Services. This refinement in the condition number estimation algorithm has been
implemented in conjunction with the symmetric envelope factorizer and the symmetric
general sparse factorizer in SPARSPAK [3]. Condition number estimation is used in
conjunction with error analysis in the LANCZOS eigenanalysis algorithm for the
symmetric generalized eigenvalue problem [5].
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NUMERICAL TECHNIQUE TO TRACE THE LOCI OF THE
COMPLEX ROOTS OF CHARACTERISTIC EQUATIONS*

E. BAHARt AND M. FITZWATER

Abstract. A numerical technique is presented to compute the complex roots of characteristic equations
for a wide class of engineering problems. Approximate values for the roots need not be known a priori and
closed form analytical expressions for the derivative of the modal equations are not required. A method has
also been developed to trace the loci of the complex roots as one or several parameters of the characteristic

equation vary.
The key to the method described in this paper is the determination of the covering space on which all the

complex roots lie. As a result the complex roots can be found using standard numerical techniques developed
for the real zero problem.

As an illustrative example, the solution of the modal equation for the vertically polarized waves in an

irregular spheroidal model of the earth-ionosphere waveguide is presented. Since it is not necessary to use
several pole-free forms of the modal equation to overcome overflow and underflow problems in the numerical
computations, one can avoid the inadvertent search for "phantom" roots and the possibility of losing a root
due to the necessity to switch functions over the complex

Key words, complex roots, characteristic equation, root loci, conformal mapping, covering space,
waveguide modes

1. Introduction. The problem of determining the complex roots of characteristic
(modal) equations is crucial to the resolution of a large variety of problems in
mathematical physics. However, as pointed out by Hamming [ 13], "It is curious that the
real-zero problem has been extensively investigated while the complex-zero problem
has generally been ignored. Evidently, it is a field ripe for further research." Thus more
attention has been given to this problem in recent years 14].

The motivation for this work is the problem of coupling of the characteristic waves
(or modes) in a laterally nonuniform model of the earth-ionosphere waveguide. The
medium of propagation and the boundaries are in general dissipative, thus the roots
v (n 1, 2, 3,- .) of the characteristic (modal) equation

(1.1) G() IG()I exp [i(,)] 0,

are the complex values of the orders of spherical Bessel functions with complex
arguments. Since the physical dimensions and the electromagnetic parameters of the
waveguide are assumed to vary along the propagation path, it is also necessary to
determine the locus of each complex root ,n of the characteristic (modal) equation over
a range of parameters describing the earth-ionosphere waveguide.
The characteristic equation for the earth-ionosphere waveguide is dealt with in detail

in this work since it poses several particularly difficult problems not usually encountered
in characteristic equations (such as Nth order polynomials). A principal difficulty with
the modal equation for the earth ionosphere waveguide stems from the overflow and
underflow problems one encounters in evaluating the spherical Bessel functions of
complex order and argument that appear in the equation. As a result it is not possible to
express the modal equation in a single pole-free form which is suitable for numerical
computations in the entire region of the complex , plane where all the relevant
characteristic roots lie. Furthermore, since the roots v are orders of the spherical
Bessel functions, no closed form analytic expressions for the derivatives of the modal

* Received by the editors January 28, 1980, and in revised form March 20, 1981.

f Electrical Engineering Department, University of NebraskauLincoln, Lincoln, Nebraska 68588.
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equation with respect to v are known. Thus it is very difficult to apply some of the
standard root finding techniques to problems of radiowave propagation over the earth’s
surface.

In a recent technical report [ 12], Goodhart and Pappert describe in detail a novel
root-finding technique, developed by Shellman and documented by Morfitt 18], for the
evaluation of the complex roots v" (n 1, 2, 3, .) of the characteristic equation (1.1).
In their work the authors exploit the properties of functions of complex variables which
are analytic everywhere except at isolated poles. Thus special consideration is given to
the properties of the phase of G(v) around nth order poles or zeros where the constant
phase contours of G(v) intersect. Furthermore, since the phase of G(v) increases by
27rm along a contour (in a counterclockwise sense) enclosing only an mth order zero
while the phase decreases by 2zrn along a similar contour enclosing only an nth order
pole, the accumulated phase change of the function G(v) around any closed (counter-
clockwise) contour C in the complex v plane is equal to 27r times the number of zeros
minus the number of poles. This assumes that no zeros or poles lie on C and that ruth
order zeros or poles are accounted for m times. Goodhart and Pappert [12] describe in
detail the method they use to track the constant phase contours using the information
on the phase of G(v) at the four corners of small squares in the complex v-plane.

In order to overcome underflow and overflow problems arising from the large
variations in the magnitudes of the functions appearing in the modal equation and in
order to use pole4ree versions of the modal equation, Goodhart and Pappert employ
eight different forms of the modal equation. One set of four equations is continuous
while the other set of four equations is discontinuous. As pointed out by them, use of the
continuous forms, however, introduces many spurious phase contours while use of the
discontinuous forms could lead to the loss of a root of the modal equation. The authors
also alert the reader to other complications such as situations that could lead to an
inadvertent search for "phantom" roots.

Once a mesh square is known to contain a zero, a more precise location of the zero
is obtained by Goodhart and Pappert by an interpolation scheme which employs both
the magnitude and phase of the function G(v), [18]. Finally, the Newton-Raphson
method is used to converge on the location of the zero.

In the interest of brevity, the reader is referred to the published reports by
Shellman and Morfitt [18] and Goodhart and Pappert [12] for a comprehensive and
interesting description of the technique developed by them.

For the technique presented in this paper only one form of the modal equation is
used. To overcome the problem of overflow and underflow a scaling factor is introduced
such that the modal equation is invariant to the changes in the scaling factor [6]. Since it
is not necessary to use several pole-free forms of the equation, no extraneous phase
contours are introduced nor does the possibility of losing a root arise due to the
necessity to switch functions over the complex plane [ 12]. Approximate values for the
roots of the characteristic equation need not be known a priori. The Newton-Raphson
method is not used in any phase of the root finding technique described in this work;
thus analytical or numerical derivatives of the modal equation are not needed.

The key to the root finding method described in this paper is the determination of
the coveting space (lines) on which all the complex roots lie. The coveting space is
readily determined for the nondissipative case (straight lines in the complex v plane)
and the complex roots can be found using standard numerical techniques developed for
the real zero problem. This relatively simple problem is considered first in 3(a). In
3(b) the more general dissipative case is considered and the technique for tracking the

coveting space is described in detail. In 4 a method is described to trace the loci o the
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complex roots of the modal equations as one or more parameters of the modal equation
varies and in 5 an illustrative example is presented. It is interesting to note that in
certain critical regions o the complex u plane (corresponding, for instance, to the
pseudo-Brewster angle), the attenuation (-Im (v")) does not increase monotonically as
n increases; thus a significant root may be outside the initial rectangular search mesh
used in the technique developed by Goodhart and Pappert [12].

2. Formulation of the problem. In this work, the characteristic equation is cast in
the form

(2. la) F(u)-- 1.

The complex roots of the equation are denoted by the symbol u" and it is assumed that
the characteristic equation may have either a finite or an infinite number of roots. The
details of the procedure used to evaluate the roots of the characteristic equation (2. la)
are given in 3 and the general procedure used to determine the locus of each root when
a parameter of the modal equation is changed is presented in 4.

Solely for the purpose of presenting an illustrative example in 5, the problem of
propagation of guided radio waves is considered here in detail. While this problem is of
considerable practical interest to physicists and engineers it also helps illustrate, in a
concrete manner, the difficult problems encountered in the evaluation of complex roots.
The physical phenomena associated with the different complex roots in critical tran-
sition regions are also described in this paper; however, the reader need not be familiar
with them to follow the general procedures presented in detail in 3 and 4.

The modal equation for the guided waves in stratified media can generally be
written as follows:

(2.1b) F(u) =Ru(u)R (u)= 1

in which the reflection coefficient R u (u) is the ratio of the fields of the downward and
upward propagating waves at an arbitrary reference level when the incident wave is
propagating upward. Similarly, the reflection coefficient R (v) is the ratio of the fields
of the upward and downward propagating waves at the arbitrary reference level when
the incident wave is propagating downward. Thus, for horizontally stratified media
R v (v) and R(v) can be expressed in terms of the familiar Fresnel reflection
coefficients and the exponential functions [2], [3], and for cylindrically and spherically
stratified media the reflection coefficients are expressed in terms of the cylindrical and
the spherical Bessel functions of complex argument and order v, [4], [5]. Since the
reference level at which the reflection coefficients are computed is arbitrary, the modal
equation (2. lb) may be expressed in several different forms. In order to solve the modal
equation for the dominant modes that contribute most significantly to the electromag-
netic fields in the ith layer of the stratified structure, it is convenient to let the reference
level be in the ith layer of the structure and (2.1b) is written as follows

(2.2) F (u) R*(v)RD* (v) 1.

Thus for example, if the transmitter and receiver are located in the uppermost layer
(i 0), R(v)= 0 and (2.2) reduces to

(2.3a) 1/R’* (v) 0.

Thus in this case the poles of the reflection coefficient R’r (u) are to be found. For
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horizontally and vertically polarized wavesR(v) can be expressed as

(2.3b)
RI4(,) z 1 Rv(,) y 1

zt+l y/+l
in which the normalized impedance z is the ratio of the tangential components of the
electric and mfignetic fields for horizontally polarized waves at the reference level.
Similarly y ’, the normalized wave admittance, is the ratio of the tangential components
of the magnetic and electric fields for vertically polarized waves at the reference level.
Thus, to find the poles of the reflection coefficient R’ the modal equation may also be
written in the general form (2. la)

(2.4) -zr(u) 1 or -y ’(v) 1.

In a multilayered model of the spherical earth-ionosphere waveguide which is con-
sidered here in detail as an illustrative example, the expressions forRu(v) andRTM (v)
are given by [5]

(2.5a) RTM =Rh(,))(kr,+l)/h(f(kr.+l), =0, 1,..., m 1

and for the innermost layer m

(2.5b) R= 1

Similarly,

(2.6a) R =RVh(,,2(k,r_l,,)/h(,)(k,r_l,,), 1, 2,..., m

and for the outermost layer 0

(2.6b) R =0.

In (2.5) and (2.6) h(,,m are the spherical Hankel functions of kind P (P 1, 2),
k to(tze,)/z is the wave number for the medium in layer and r r,.+ is the interface
between medium and + 1. Furthermore,

(2.7a)R [Ri+l.i +RDH DH
,+a (1 +Ri+l,i +Ri.i+l)]/[l-R, +xR,,, +], O, 1, 2,.. ., m 1

and

(2.7b) R [Ri-x,i +R vn tm
i-1 (1 +R,_,, +R,,,_0]/[1 .,-Ri-IR,i-I], 1, 2, 3,. m.

The two media reflection coefficients R,. +1 and R+1., for 0, 1 m 1 are

_h+l ln’ [k,+lrh,,(2 (k,+r)]- n, ln’ [k,rh(,,2 (k,r)]](2.8a) R,.+a=
"O,+a ln’[k,+arh((k+lr)]-q ln’[kyh(Z(ky)]l,=n,

./.. (1) lr)] /i In’ [kirh (1)(kir)][T]i+I In’ [ki+l,,,v (ki+
(2.8b) Ri+l,i

Ti+I In’ [ki+lrh v(1)(ki+xr)]_rli In’ [krh,(2)1 r=ri.i

in which r/ (tx/e)a/2 is the intrinsic impedance for the medium in the ith layer and
ln’f(kr)--[df/d(kr)]/f. Thus as kiri,i+l-)Oo, Ri,i+l=-Ri+l,i reduce to the Fresnel
reflection coefficients at the planar interface between two semi-infinite media. The
reflection coefficients Ron and Rn are

(2.9a) ROn ROh ,,(2)(k,r_l.,)/h (1) (k,r 1,i), 1, 2,..., m,

and

(2.9b) Rn =Rh()(kr,+l)/h(,,2)(kr.+x), =0, 1,..., m- 1.
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The general form of the modal equation (2.1) is not restricted to layers with
homogeneous media. The modal equation for stratified media with continuously
varying permittivity profiles, such as dielectric waveguides, can also be cast in the form
(2.1) [7].

As in the case of the modal equation for the earth-ionosphere waveguide, it is
assumed here that: (a) Good initial estimates for the roots o the modal equation are not
always known; (b) Closed form analytic expressions for the derivative dF(u)/dv are not
available and numerical differentiation of F(v) is very sensitive to error because both
the phase and the absolute value ofF(v) vary rapidly in critical regions of the complex v

plane.
In any realistic model of the earth ionosphere waveguide, for instance, it is

necessary to account for lateral variation in the boundaries and in the electromagnetic
parameters of the media. These variations result in mode coupling [5]. Thus in this work
a method is presented to: (i) Determine v", the roots of modal equation for all the
dominant modes, assuming that no initial estimates of v" are given and that the total
number of such roots is not known a priori; (ii) Determine the locus o each root u" as a
function of frequency or as the electromagnetic parameters of the media and the
boundaries vary laterally along the propagation path.

3. Lod of IF (v)] I and the roots o| the modal equation at a fixed cross section and
frequency

(a) Nondissipative media with perfectly reflecting boundaries. Consider first a
spherical waveguide consisting of a nondissipative medium (/0, e0) bounded by per-
fectly reflecting concentric spherical boundaries at r r0,a and r ra,2 respectively. I.n
this case it is relatively easy to determine the roots v of the modal equation (2.1). For
the propagating modes vn is real and lies between v klr0,1 and =- and for the
evanescent modes v" lies on a line parallel to the imaginary axis, v =-1/2+ ia with
0 >a > -oo. In the corresponding cylindrical problem v" lies on the negative imaginary
axis for the evanescent modes [8].

The propagating modes are also classified as the whispering gallery modes or the
earth-detached modes for k lr,2<. <kr0, [19], [20], [21] and the regular earth-
ionosphere waveguide modes (that are reflected off both the earth and ionosphere
boundaries) for -< v" <k lrl,2. Along the real axis between klr0,1 and v -1/2 and
along the line v 1/2 + ia, 0 >a >-o the magnitude

(3. la) IF(v)I=M(v) 1.

Several standard numerical methods developed for the real zero problem can be used to
determine the roots of the modal equation at points on these lines where the phase angle

(3.1b) arg [F(v)] 4(v) 0

or b 2zrm (m 0, :t:l, +2,...), [23]. Since v is the order of the spherical Hankel
functions, the expression forF’(v) dF/dv cannot be written in a closed analytical form
[ 1] and numerical differentiation is subject to significant errors in critical regions. In this
work the interval halving technique (bisection method [ 10]) is used to locate the roots v"
on the locus M(v)= 1, (3.1a).

(b) Dissipative media with nonperfectly reflecting boundaries. For the general
case in which the medium and the boundaries of the waveguide are dissipative all the
waveguide modes attenuate along the propagation path. The roots u" are complex for
the dissipative case and the loci of the points satisfying M(v)= 1, (3.1a), must be
determined numerically in order to use this method to solve the modal equation.
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Since the function F(u) is analytical along the loci M(u)- 1, it follows from the
Cauchy-Riemann conditions that

10M
(3.2a) - Ov---
where

(3.2b)

Thus

and IOM= 04,
M Ov OUR’

U =UR +iu.

I(R 0& OM1
gradM.gradtk

OVR Ore
(3.3) +- =0

and the constant 4) contours (including b 0) cut the locusM 1 at fight angles in the
complex u plane. The conformal mapping properties of analytical functions o complex
variables are exploited throughout this work. In the terminology of algebraic topology
the mapping, M(u)= 1, defines in the u plane the "covering space" of the unit circle,
IF(v)[ 1, [17].

To trace the locusM(v) 1 for the general dissipative case the following method is
used (see Fig. 1). Assuming that the modes contributing significantly to propagation in
the region between the earth and the ionosphere are of interest, only those roots for
which Re (v,) < k lr0,1 are sought. Thus beginning with the point v k lr0,1, and using
the one-dimensional interval halving method, the imaginary part of u is varied until

(3.4) IM(vp) 11 < 8, p 1, 2, 3...,

and the first point u (not necessarily a root) is found on the locus M 1 (6 is typically
10-2 to 10-3). This process is repeated once more beginning with the point u A (where

Im()))

-I/2

Interval
Halving Normal
To AVp+

)P+I + A’PP
(Eq. 3.5)

FIG. 1. Locus ofM(v)= and the roots of F(u)= 1.
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A is a positive increment) and the interval halving procedure is followed parallel to the
imaginary axis. The size of A is adjusted such that the difference in the phase b (v) for
the two adjacent points on M 1, vl and v2, is about 0.2 radians.

The remaining points on the locusM 1 are determined as follows (see Fig. 1). Let
vp and vp/ be the last two points found on the locusM 1 (satisfying 3.4). The initial
value assumed for the next point, vv/2, is

(3.5) v

The point vp/2 on the locus M 1 is obtained through the interval halving process.
However, this time instead of phasor increments parallel to the imaginary axis (as in the
cases p 1 and 2), the phasor increments are taken parallel to Avp/l since these
increments are approximately perpendicular to the locus M 1.

This process is repeated until the phasor F(vq/ 1) crosses the positive real axis. Let
Vq and/q+l correspond to the points on M(v) 1 such that (/q) >0 and )(b’q+l) < 0.
Obviously the root of the modal equation v lies on the locus M(v)= 1 between the
points vq and Vq+a. Since F’(v) cannot be written in closed analytical form, the secant
method is used to locate the root [10] (see Fig. 1). Thus the initial value assumed for the
next point, Vq+2, on the locus M 1 is obtained through linear interpolation:

0-q+l "kq+
Avq+l.(3.6) v /q +1 "+" (lq lq + 1)

)q )q+
/q+l

(q )q+

The interval halving procedure is carried out parallel to the phasor A’q+l that is
approximately perpendicular to the locus M 1 until the new point Vq/2 is located on
this locus. This procedure o linear interpolation in tk and interval halving is repeated
until the first root is located on the locus M 1 such that

(3.7) IF(v 1)

where 50 is typically 10-3. Condition (3.7) for the root v should not be confused with
condition (3.4) for points vv along the locusM 1 which do not necessarily satisfy (3.7)
since -r < bp _-< r.

Beginning with v the procedure described above is repeated again to find new
points on the locus M(v)= 1, until F(v) again crosses the positive real axis. The next
root v2 is located through the process of linear interpolation (3.6) parallel to the locus
M(v) 1 and interval having perpendicular to M(v)= 1. It should be pointed out,
however, that any one of the numerical techniques developed for the real zero problem
could also be used instead of linear interpolation and interval halving [11].

NAll the roots of the modal equation (2.1) v , ., v are found in this manner for
the modes that lie on the principal branch of (3. la) and contribute significantly to the
particular propagation problems under consideration. The number N depends on the
excitation, type of irregular waveguide (that results in mode coupling) and on the
distances along the propagation path. Usually the magnitude of the imaginary part of vN

(associated with wave attenuation) is the principal factor that determines the number of
modes N. It should be pointed out, however, that the magnitude of v7 does not
necessarily increase monotonically as the number n associated with the nth root found
on the locus M(v)= 1, increases.

In the nondissipative case, or instance, the locus M(v)= 1, (3.1a) has only one
branch in the lower half complex v plane (see 3a). However, for the dissipative case it
may be necessary to consider, besides the principal branch of the locus M(v)= 1,
additional closed branches around the zeros or poles ofF(v), (2.1). Thus for instance if
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F(v) has a simple zero at v0, a single root of the modal equation (2.1) can be ound
where the b 0 contour intersects the closed branch of M(v) 1 around v0 [9], [15].
For the propagation problem considered here, as an illustrative example, such an
isolated branch of M(=,) I is associated with the pseudo-Brewster angle. If IIm (v0)l >>
k 11"1.2 the contribution from the mode on this branch may be ignored.

4. Loci of the roots v" of the modal (characteristic) equation. For irregular
waveguide structures in which the boundaries and the electromagnetic parameters
(/x, e) vary along the propagation path, it is necessary to determine the locus o each of
the roots ," along the propagation path in order to solve the differential equations for
the coupled mode amplitudes [5]. In the case of waveguide bends with varying
curvature, for instance, it is necessary to compute the value of v" as a function of
curvature [8]. Similarly, to determine the transmission of transient signals through a
uniform waveguide, it is necessary to trace the loci of =," as a function of frequency

For the case of nondissipative media with perfectly reflecting boundaries, the locus
of each o the roots v" is along the positive real axis for the propagating modes and
parallel to the negative imaginary axis for the evanescent modes. In these cases one of
the standard methods can be readily used to track the locus of each root v" as a given
parameter or parameters vary along the propagation path [ 11].

In this work, dissipative media with non-perfectly reflecting boundaries are
considered. In this case the direction o the locus of v" is not parallel to the real or
imaginary axes. Thus it is more difficult to trace the loci of v" in the complex v plane.
Because of the reasons stated in 3, the following procedure was found to be suitable to
track the locus of the root v" (see Fig. 2).

Re (v)

Interval \
o

Halving Normal ’\ ",n

+ ocu o =
(Eq 4.1)

For ho+2Bh

(Sq .2)
n b

Locus F(Vn)

FIG. 2. Locus F(v") for h =ho+mAh, m =0, 1, 2, .,M.

Assuming that the variable parameter along the propagation path is the height of
the waveguide h, a set of roots of the modal equation is computed for each of the heights
h -h0 and h h0+ Ah using the technique described in 3. These sets of roots are
denoted by the symbols , and =,, respectively (n 1, 2, ., N). The procedure in 3
can, of course, also be repeated to determine the set of roots vz for h h0+ 2Ah.
Instead, however, the following procedure is found to be more efficient.
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The initial value assumed for u is

Av7 v7 -vOAh(4.1) v v +----Ah--v + ah

and the inteal halving procedure is carried out parallel to the phasor Av until a new
point, v, on the locus M(v) 1 is located for h h0 + 2Ah. This search normal to the
phasor Av is needed to account for cuature of the locus v". Another point, v, on the
locus M(v)= 1 is found in a silar way using

(4 )
Ah 4

and v on the locus M 1 theas the assumed initial value. With these two points v

procedure of linear inteolation in phase (3.6) and interval halving described in 3 can
be used to locate the complex root v corresponng to h h0 + 2Ah.

This locus tracing technique for the roots v of the modal equation (2.1) is
performed for

(4.3) h h0 +mAh h,

where
m=2,3,4,...,M and Ah=(h-ho)/M.

is scheme can also be used if any other parameter of the waveguide is perturbed
along the propagation path or if it is necessa to deterne the locus of the root v" for a
range of frequendes.

5. ustrative exple. To illustrate the root finding procedures described in this
paper, the modal equation for vertically polarized waves in an iegular model of the
earth-ionosphere waveguide is considered here [5], [6]. For simplicity a three layer
model is assumed with

e0 el(l-i), ionosphere
(5.1) e= ea=e, r == (i=0,1,2)

e= el(lO-ilO), earth

in which e and are the perttivity and permeability for free space. e effective
height of the ionosphere h is assumed tovabetweenh 60 km and h0 90 km, thus
the effective ionosphere bounda is given by

(5.2) r=ro, =ra,+h, hh ho
in which rl,2 6.4 x 103 km is the radius of the earth. At the frequency,

(5.3) y 5,
assumed in this illustrative example, both the earth-detached modes as well as the
earth-ionosphere waveguide modes that are reflected off the ionosphere and each,
contribute significantly to radio wave propagation.

In Fig. 3 the search for points on the locus M(u)= 1 in the complex u plane is
illustrated for both h0 90 km and for h h0+ Ah, where Ah (h h0)/20 1.5 km.
Beginning with the point u k lr0,a the inte halving procedure is used to locate the
first point u on the locus M(u)= 1. is procedure is repeated beginning with va-A
(see 3) and the second point vz on the locus M(u)= 1 is located. From here on the
initial value assumed for up+a is v =Vp+l+Au,+ (3.5), where Aup+ =up+-up is
approximately in the direction tangent to the locusM(v) 1 at vp+a. Note that for the
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purpose of the illustration, both the initial value assumed for v near the locus, (3.5), as
well as the points on the locus satisfying (3.4) are shown on Fig. 3. The interval halving
procedure used to advance from the initial value 9 (3.5) to the point vp/2 on the locus
uses increments in the direction of the phasors AVp/l. Thus the phasors joining the
initial values assumed for v (3.5) and the corresponding points on the locus vp/2 are
approximately normal to the locus M(v)= 1. The smaller the curvature of the locus
M(v) 1 the smaller the distance between the assumed initial value for v and the
corresponding point on the locus Vp/2.

Once the phasor F(9) crosses the positive real axis ((v)= 0), the linear phase
interpolation procedure (3.6) and the interval halving procedure are used to locate the
root 91 of the modal equation satisfying (3.7) (see Fig. 3). To locate the rest of the roots

2
9
3 4v and 95), these procedures are repeated. The distances between the roots 90

for ho and the roots 97 for hi-" h0-bAh becomes progressively larger as the mode
number increases.

Since the first value assumed for 9 is on the real axis (9 k0, r0,1), it is preferable to
begin the root search for h0 hmax where IIm (91)1 is smallest.

Mode number i is an earth-detached mode, while modes 2 and 3 on both sides of
the trough in the locus M(9)- 1 are modes of near grazing incidence at the earth’s
surface. It is interesting to note that the attenuation associated with mode number
3(-Im (93)) is larger than the attenuation for mode number 4. The trough in the locus of
M(9) 1 (near grazing incidence at the earth’s surface) is associated with the minimum
in the magnitude of the reflection coefficient for vertically polarized waves near grazing
incidence. This minimum in the magnitude of the reflection coefficient for vertically
polarized waves (near grazing incidence at the earth’s surface) is associated with the
pseudo-Brewster angle [ 16]. Thus the relatively large attenuation associated with mode
number 3 is related to the pseudo-Brewster angle phenomenon which is not present for
horizontally polarized waves. In the neighborhood of the pseudo-Brewster angle the
unction F(9) varies very rapidly and in this transition region it is very difficult to
compute F’(9).

In Fig. 4, the phasor F(9) is plotted for points near the locus M(v)- 1 from
9 k lr0,1 to the point 91 (the first root of the modal equation). As indicated in Figs. 1

FIG. 4. Search for the first root shown in the F()-plane.
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and 3, not all these points are on the locus M(v) IF(v)[ 1. It should be observed that
the linear phase interpolation procedure (3.6) is triggered when F(v) crosses the
positive real axis. For the illustrative example, more intermediate points on the locus
M(v) 1 are shown than are required for the numerical evaluation of the roots. In Fig.
5, the phasor F(v) is plotted as the search for the root v2 proceeds from the previously
found root v 1. The direction of search in Figs. 4 and 5 is counterclockwise.

- .oo -’o.oo oo

FIG. 5. Search or the second root shown in the F(v) plane.

Im(’P
sso. oo 1730.00 1810. O0 B9(]. O0 1970. O0 2050. Of,
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FIG. 6. Loci of the roots 9" [or n 1, 2, 3, 4 as h varies [rom 60 km to 90 kin.
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In Fig. 6 the loci of the roots v" are shown for n 1, 2, 3, 4 with h varying from
h0 hB to hM ha. The procedure for tracing the locus v" is described in 4. Note the
peculiar behavior of the locus for mode number 3 which is associated with waves near
the pseudo-Brewster angle.

The steps in the procedure for finding the point v on the locus v are illustrated in
Fig. 7. As described in 4, the intermediate points v and v are located on the locus
M(v) 1 for h h0-2Ah. Thus they are not on the locus for v I(F(,I) 1).

6. Concluding remarks. A technique is presented for the solution of the complex
roots of characteristic equations appearing in a large variety of problems in mathema-
tical physics. In addition, the method can be used to trace the loci of these roots as one or
more parameters of the modal equation are varied. It is not assumed, in this work, that
approximate values for the roots are known, nor is the number of roots to be
determined known a priori.

The presence of poles, in the analytical expression for the modal equation, does not
have a significant bearing on the method presented and only one form of the modal
equation is used even though the functions appearing in the equation fluctuate over
several hundred orders of magnitude.

For the illustrative example presented, an irregular model of the earth-ionosphere
waveguide is considered. It is shown that in the critical transition region (corresponding
to waves at the pseudo-Brewster angle), there is a sharp increase in the attenuation
factor (-Im (v")) [22]. For good conducting ground this occurs for vertically polarized
waves near grazing incidence. At 15 kHz (assumed in the example), both the earth-
detached modes as well as the regular earth-ionosphere waveguide modes (that are
reflected off the earth and ionosphere boundaries) are present. The method presented
in this paper tracks all these different kinds of modes in a systematic manner. It also
provides a straightforward scheme for the numbering and the classification of the
different modes of the system.
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MULTIPLE SOLUTIONS AND BIFURCATION
OF FINITE DIFFERENCE APPROXIMATIONS TO

SOME STEADY PROBLEMS OF FLUID DYNAMICS*

A. B. STEPHENSf AND G. R. SHUBINt

Abstract. We review and extend an earlier study of the behavior of multiple finite difference solutions
for a centered difference approximation of the steady Burgers’ equation. Using the fact that all of the inviscid
(viscosity 0) solutions can be found, we numerically continue these solutions with respect to viscosity and
thereby uncover turning points and bifurcation points. In addition, we demonstrate analogous behavior for a
model of one-dimensional duct flow and for a particular discretization of the supersonic blunt body problem.

Key words. Burgers’ equation, multiple solutions, bifurcation, continuation, fluid dynamics, finite
differences

1. Introduction. In computational fluid dynamics, finite difference equations
furnish a discrete approximation to the differential equations which are a continuous
description of the flow field. It is usually assumed that a numerical solution of these
difference equations will, to some reasonable degree of accuracy, actually approximate
the flow field. However, since the governing equations for the continuous problem are
nonlinear, it is ordinarily quite difficult to establish the existence and uniqueness of
finite difference solutions. In fact, for some model problems, certain very reasonable
difference schemes can yield multiple (real) solutions even when the continuous
problem being approximated is known to have a unique solution.

For a practical problem, when a single solution is obtained we usually cannot tell
whether other solutions exist. In general, there is no algorithm for determining all of the
solutions of a nonlinear system. However, under certain circumstances, if one solution
is known others may be determined [3]. If several solutions are found, it may be very
difficult to select the best approximation. This is especially true if the solutions are
"dose together." If the solutions are far apart, we may try to compare the solutions with
experimental data to identify the physically relevant one(s). We may also look for
properties that the discrete solutions should inherit from the continuous problem.
Another approach might be to refine the computational mesh, assuming the con-
vergence of one of the difference solutions to the correct solution of the differential
equations in the limit. However, we generally have no guarantee that the "spurious"
solutions will go away in this limit, nor would we be able in practice to obtain a
sufficiently small mesh size.

These practical questions can be interpreted in a more theoretical setting. Suppose
that a given steady state fluid dynamics problem has been formulated as a system of
ordinary or partial differential equations subject to certain boundary conditions. We
assume (though this is usually not dear) that this system is well posed and provides an
adequate description of the physics. This system is then discretized consistently to yield
a system of difference equations. We restrict ourselves here to real-valued solutions of
these equations since they are the ones that may be obtained with the usual compu-
tational schemes and are the only ones with physical meaning. The following questions
arise:

(1) Does this systetn of difference equations possess no solution, a unique solution,

* Received by the editors November 13, 1980. This work was supported by the Naval Surface Weapons
Center Independent Research Fund.

t Applied Mathematics Branch, Naval Surface Weapons Center, Silver Spring, Maryland 20910.
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or multiple solutions? If multiple solutions exist, which one provides the best approxi-
mation and how can it be found and identified?

(2) How do the solutions depend on physical parameters (e.g., viscosity) and
discretization parameters (e.g., finite difference mesh size)? Are there bifurcation or
turning points? How do the solutions behave in the limit of vanishing mesh size?

(3) Which solutions to these steady difference equations are obtainable via some
time-dependent or iterative technique (i.e., which are "stable" or some technique)?

Alternately, assuming a difference scheme has not been selected, we may further ask
(4) Is there some consistent difference approximation which possesses a unique

solution?
For anything but the simplest model problems, these questions are very difficult to

answer. With the steady Burgers equation as a model, Kellogg, Shubin, and Stephens
[9] investigated multiplicity of solutions for three finite difference approximations.
Schreiber and Keller 18] have found multiple solutions for the driven cavity problem.
For certain ODE boundary value problems, Beyn and Doedel [4], Allgower [ 1], and
Peitgen, Saupe, and Schmitt [15] have investigated multiple continuous and discrete
solutions. Osher [ 14] has designed a scheme which possesses a unique solution for an
ODE singular perturbation problem. Some work has also been done or inviscid fluid
dynamics problems which possess multiple (weak) solutions to the continuous problem
and require an entropy condition to select the correct physical approximation. Harten,
Hyman, and Lax [7] have shown that, for a single conservation law, monotone schemes
will converge to the entropy-satisfying solution while solutions obtained with the
Lax-Wendroff scheme may not. These kinds of multiple solutions have also been found
for some approximations of the small disturbance transonic equation by Stephens and
Werschulz [21], while Engquist and Osher [6] have designed a scheme which converges
only to entropy-satisfying solutions. Shubin, Stephens, and Glaz [19] found multiple
solutions for one-dimensional inviscid duct flow.

In the present paper we review the results of [9] and extend them to study the
behavior of multiple finite difference solutions for a centered difference approximation
of Burgers’ equation when the viscosity (or cell Reynolds number) is varied. This
extension is partly analytic and partly numerical. We use the fact that all of the inviscid
(viscosity v 0) finite difference solutions can be explicitly found, and use a numerical
continuation procedure to advance these solutions to positive values ot v and thereby
uncover turning points and bifurcation points. As shown in [9], for sufficiently large v
(i.e., when a cell Reynolds number condition is satisfied) there is a unique solution in a
certain domain f and all other solutions either become complex-valued or lie outside
f. Some properties of these difference solutions are investigated. In addition to
Burgers’ equation, we look at a model of viscous one-dimensional duct flow and use the
M-function approach of [9] and numerical continuation to study the discrete solutions.
We also show some analogous computational results for a particular discretization of
the inviscid axisymmetric blunt body problem [ 19] when artificial viscosity is added.

2. Burgers’ equation
2A. The continuous and discrete problems. We are interested in this section in

the steady Burgers equation

(2.1) uu,-vu,,, =0, v >0

with boundary conditions u (0) 1, u (1) 1, whose solution is given by u (x)
-/: tanh (k(x-0.5)/(2v)) where the constant/ satisfies 1 k tanh (k/4v). The time-
dependent equation u + uu,, vu,,,, was introduced by J. M. Burgers as a simple model
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for the more complicated differential equations of fluid flow. The terms uux and vux
model convection and diffusion respectively.

Let xi ih, 0 <- <- n + 1, h 1/(n + 1) be uniformly spaced mesh points and let ui
represent an approximation to u (x). We consider the following centered difference
approximation to (2.1)

4v
(2.2) uL-uL,-O(Ui+l-2Ui-[-Ui-l) 0, 0

h

where 1 _-< _-< n and we set u0 u (0) 1 and u, + u (1) 1. For fixed h we write the
nonlinear system symbolically as F(u(v), v)= 0.

2B. Review of previous results. We now briefly discuss the results of [9] concern-
ing multiple solutions to various difference approximations (and more general boun-
dary conditions) of which (2.2) is a particular case. When a scheme analogous to (2.2)

C (U +1 Ui- 1) b’ (Ui + 2U, + ui_ 1)
2h h 2 =0

is applied to the linearized equation cu, -vu 0, the condition ch/v < 2 is required
for a nonoscillatory solution. This restriction is called a cell Reynolds number condition,
where ch/v is called the cell Reynolds number. For Burgers’ equation (2.1) the cell
Reynolds number is defined to be h/v. Cell Reynolds number conditions occur for more
general viscous flow problems and they impose a severe restriction on the class of
problems which can be treated accurately [ 17].

For fixed v and h it is possible to find multiple solutions to (2.2) both numerically
and, in some special cases, analytically. Furthermore, there are instances where these
solutions are to some degree "close together". We now indicate how the theory of
M-functions relates the solutions of (2.2) to the cell Reynolds number.

We recall that a mapping F:cR -->R is an M-function if it is (1) inverse
isotone and (2) off diagonally antitone [ 16]. In particular it is known [16] that if f is an
n-dimensional rectangle, F is an M-function on f if the Jacobian matrix Fu is an
M-matrix on fL A sufficient condition that Fu be an M-matrix is (i) its diagonal
elements are positive, (ii) its off-diagonal elements are negative, and (iii) it is irreducibly
diagonally dominant. In reference to the equation Fy b, ]1, y2 O are called sub and
super solutions on O ifF] --< b andF]2 >-- b respectively, where the inequalities are with
respect to the natural ordering on R". It then follows from a modification of a theorem
of Rheinboldt and Ortega [13, p. 465] that if F is an M-function defined on the
rectangle f and if yl, ,2 are sub and super solutions for Fy I, then Fy b has a unique
solution y*, yl __< y. __< y2, with respect to O. That is, there is exactly one solution toFy b
in O although there may be other solutions outside of f. This theoretical framework
may then be applied to (2.2) to conclude (for fixed h and v) that if h/v < 2 then (2.2) has
a solution u* which is unique with respect to an n-dimensional rectangle fh and satisfies

U* A c ’h,

where

Oh {y lY e R", lY, -< 2v/h }.

In other words, there is a unique solution with respect to Oh when the cell Reynolds
number condition is satisfied. Note that as h --> 0 or v --> oo the set Oh fills out all of R". In
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[9] it is also shown that u* is antisymmetric with respect to x 1/2 (ui =--Ign-i+l,

1,-.., n). For h/v <2 a solution to (2.2) lying in lib can also be obtained by the
Brouwer fixed point theorem. If we rewrite (2.2) in the form G(u)= u it can then be
shown that G(lib) c lib.

With reference to question (4) in the Introduction, the second order accurate
scheme

where

2U/2+l U i_

4h ft2 (yi+lUi+l- 2yiu + y-lU-l)=0,

was shown in [9] to have a unique solution. Also, when the boundary conditions are
such that (2.1) has a positive (negative) solution, the proper one-sided differencing for
uu,, with centered differencing for Uxx gives a scheme which has a unique positive
(negative) solution.

2C. Numerical continuation o| solutions. We now look at the solutions to (2.2) in
more detail. The general idea which we pursue is to compute solutions to (2.2) by
numerical continuation with respect to v starting from finite difference solutions to the
inviscid equations (, 0). That is, we consider the nonlinear system

(2.3) u+1-u2-1 0, u0--1,

which may be regarded as a difference scheme for

(2.4) uux-O, u(O)-l, u(1)--1.

Equation (2.4) does not admit a solution in the classical sense but admits generalized
solutions with jump discontinuities. In fact, (2.4) does possess a solution

f 1, x <1/2,
-1, x>1/2,

which is the unique inviscid limit of solutions to (2.1). For the remainder of the
discussion in this section we restrict ourselves to the case where n is even. In that case
there are 2" solutions to (2.3) given by u + 1. These solutions are enumerated in Table
i for the case n 4. In the case of n odd some of the u are not coupled to the boundary
conditions and there are an infinite number of solutions. Starting with the solutions to
(2.3) we numerically integrate the curves (d/d,) F(u(v), u)= F,u +F 0. In order to
show the existence of such curves, at least for v sufficiently small, we use the implicit
function theorem and evaluate Fu at the solutions of (2.3). The resulting matrix Fu is

0 u2 0

0 -u2

where each u + 1. It is easy to show by minor expansion that the determinant of this
matrix is 1 or- 1.
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TABLE
Discrete inviscid solutions to Burgers’ equation (a 1)

and ductflow equation (a E/D)]or n 4. See Figs. lb and
3b respectively.

Solution Ul U2 3 4

2 1 a
3 a
4 a a

5 a
6 a 1 a
7 a a
8 a a a

9 a 1
10 a a
11 a a
12 a a a

13 a a
14 a a a
15 a a a
16 a a a a

The actual computations of solutions to (2.2) for increasing v were performed
using Davidenko’s method [ 13]. For a particular value of v Newton’s method was used
to solve (2.2), v was then increased and the process repeated. In a region where
computation became difficult due to turning or bifurcation points the following method
was used. The system (2.2) with variable v was augmented with det (Fu (u(v), v)) 0 and
solved. We note that more sophisticated methods have been developed for continuing
solutions through turning or bifurcation points [2], [8], [ 12]. The qualitative behavior of
the solutions as a function of v is shown for the cases n 2 and n 4 in Fig. I where the
vertical axis represents n-dimensional Euclidean space. In Fig. I we also depict the set
12h. For the case n 4 there are three turning points and three bifurcation points. There
are four antisymmetric solutions (4, 6, 11, and 13). We call solution 4 the principal
solution since it is the solution which best approximates (2.1). All other solutions are
called spurious. The principal solution bifurcates twice and when h/v < 2 (v > 0) the
principal solution lies in fh with all other solutions (9, 11, 15) outside of fh as predicted
by the results discussed earlier. Figure I is complete except for the possible existence of
loops which cannot be found by the present method.

For the simple case of two interior mesh points a geometrical model indicates how
bifurcation occurs. In this case (2.2) is a system with two equations and two unknowns
u 1, u2. If these equations are added to and subtracted from each other the following
equivalent equations are obtained

(u. + u 0(u u + 0) 0,

(ul +O)2+(u-O)z= 2+20 +0z.

Solutions are given by the intersections of the lines//2----U and u2 u i- 0 with the
circle of radius (2 + 20 /02)1/2 and center (-30/2, 30/2). This situation is pictured in
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VISCOSITY

b)

15
11
9

VISCOSITY
FIG. 1. Behavior of discrete Burgers’ solutions as a function of viscosity v for a) n 2 and b) n 4.

Numbered solutions correspond to Table 1.

Fig. 2. As v increases from 0, the line u2 u 1-0 moves through the circle and at a
critical value of v tangents the circle at a point and bifurcation of that solution occurs. A
similar but more complicated diagram models the antisymmetric solutions (one of
which is the principal solution) in the case n 4. It is interesting to note in the general
case of n even that the solutions of (2.2) must lie on an (n- 1)-sphere with center
(-(n + 1)0/2, (n + 1)0/2, -(n + 1)0/2,...) and radius (n + nO + n(n + 1)202/4) 1/2. To
see this, multiply equations 2k by k (k 1,. ., n/2) and equations n- 2k + 1 by -k
(k 1,..., n/2) and then add.
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U

U

FIG. 2. Geometric interpretation o]’ discrete Burgers’ solutions ]’or n 2.

Bifurcations and turning points occur only when Fu is singular. We now examine
the singularity of Fu for antisymmetric solutions when n 4. In this case (u =-u4,

u2=-u3) F is

20 -0 + 2u2 0 0
-0 2u 20 -0 2u2 0

0 -0-2u2 20 -O+2u
0 0 -0 + 2u2 20

We remark that F is singular whenever ui 2v/h 0/2, i= 1, 2. In the case that
U 2v/h, the sum of the rows of F is zero. When u2 2v/h, F is reducible and
det Fu (20)2((20)2 (-0 2u2)2) 0. Although the argument is more involved it can
be shown for the general case of n even thatF is singular whenever ui 2v/h. For the
case n 4 and considering the principal solution we see that u l(V)= 1 at v 0 and
approaches 2/3 as v --> o. Since u l(V) is a continuous function of v there must be a value
of u for which U l(V)= 2v/h and u2(v) must also take the value 2u/h by similar
reasoning. In the general case we conjecture that there is a principal solution which
bifurcates n/2 times.

As a final point of interest we discuss the obtainability of solutions of (2.2) by the
use of time-dependent methods. Such methods are a common means of obtaining
solutions to steady problems. Basically one considers a finite difference approximation
to a time-dependent formulation of the problem, guesses an initial value and then
marches through time until a steady state is reached to within some tolerance. We have
differenced the time-dependent Burgers equation ut + uux vux with the predictor-
corrector scheme of Brailovskaya [17] and with the standard forward-time, centered-
space (FTCS) shceme. In the steady state both schemes reduce to (2.2). At v .005 the
Brailovskaya scheme would converge to solutions 1, 4, and 16, whereas FTCS Would
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only converge to the principal solution 4. However, other experiments indicate that
both schemes will converge to spurious solutions near bifurcation points.

3. One-dimensional duet flow. We now consider a model for one-dimensional
viscous, steady, compressible flow in a duct of variable cross sectional area A(x). This
model possesses solutions that are quite similar to those for Burgers’ equation. The
governing equations (see, e.g., [5], [11]) may be reduced to the single equation

(3.1) Du+E()-Fu-G=0,

where D (, + 1)c/(2y)-lxAx, E (3’ 1)cH/v, F txA/v, and G
(/- 1)c(H/u -u/2)A/(yA). Here u is the velocity, V the ratio o specific heats, Ix the
viscosity coefficient, and c andH are constants of integration. If we linearize u about u0
and assume constant area flow (A 0), (3.1) reduces to

u -Fux O,

which is a linear Burgers equation. Consequently if centered differencing is used to
approximate (3.2), the cell Reynolds number criterion for a nonoscillatory solution is

hDI1 E/(Duo)21/F < 2, where h is the mesh size. It can be shown that this is equivalent
to the condition poh lu0(1 1/ME)l/p, < 2 given by Meintjes [ 11], where p0 is the density
and M is the Mach number.

In order to apply our M-function approach we find it necessary to take Ax 0, so
that in (3.1) D, E and F are constants and G 0. The simplified (3.1) is discretized
(analogously to Burgers’ equation) as

(3.3) D(u,+-u,_) u-+ u- F(u,+-2u +u_)
2h 2h h

O,

and the boundary conditions are taken to be

(3.4) u0=a,

where a, /3 >0. Let b min (a,/3) and max (a,/3). Then in a manner entirely
parallel to that for Burgers’ equation, it can be shown that (3.3), (3.4) possess a unique
solution with respect to the rectangle

2F
ifh<

(E/D)1/21+h-- ( )=D’_owf9= yyeR", 2 <- Yi <-- E/D 1/2

1-
2F if h >

when hD(E/(D42) 1)IF <2, and either b2<E/(2D) or hD(1-E/(D2))/F <2.
Hence again, for fixed h, it is possible to choose/x (and thus F) large enough to assure a
unique solution in a certain n-dimensional rectangle. Similarly, or fixed/., h can be
made small enough. Furthermore, the linear criterion for nonoscillatory solutions and
the nonlinear criterion for uniqueness are again strongly related.
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As for Burgers’ equation, when n is even there are 2" solutions of (3.3), (3.4) when
/x F 0. Choosingc 1 and/3 E/D, the inviscid solutions are given by taking ui 1
or ui =E/D at each mesh point (see Table 1 for n---4). We again employ our
numerical continuation procedure with E/D 0.63 to follow all of the/x 0 solutions
to values of viscosity >0. The resulting diagrams showing the behavior of the
solutions for n 2 and n 4 are given in Fig. 3. We observe that no solutions bifurcate

Z

H
p-

_J

a)

0 VISCOSITY O.

Z
0
H

0

0
Z

2.2

8

b)

2
0 VISCOSITY 0.05

FIG. 3. Behavior of discrete duct flow solutions as a function of viscosity I for a) n 2 and b) n 4.

Numbered solutions correspond to Table 1.
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off the principal solution in these cases. It is also interesting that, of the solutions that
remain bounded, the principal solution is the one with maximum 12-norm.

Some numerical experiments with variable area A(x) were also carried out for
n 2 and n 4. In these computations, turning points were found when the constant
area duct solutions for Ix 0 were continued with respect to duct shape A(x).

4. Supersonic blunt body problem. In [20] a particular discretization of the steady
inviscid axisymmetric blunt body problem was found to have two solutions for Mach 3
flow over a sphere. In this problem an incoming supersonic stream impinges on the
sphere and a bow shock forms separating the undisturbed flow from the disturbed
"shock layer" between the sphere and the bow shock. The problem is to determine the
flow field in the shock layer and the position of the explicitly tracked bow shock. In this
approach a variation of Newton’s method was used to proceed from some initial guess
to a steady state. Lines of constant density (isopycnics) and the computed bow shock
positions for the two solutionsA andB are shown on the left in Fig. 4. We note that the
computed bow shocks are oscillatory in "opposite senses" in the two solutions. These
solutions are certainly close together and it is difficult to select the best approximation.
Both solutions agree reasonably well with experiment. In addition to the Newton
procedure, we have also used the method of Brailovskaya to integrate time-dependent
equations which yield the same steady state difference system. When this method is
started near solution B it converges to B, but when started near A it fails to converge.

Here we investigate the behavior of solutions A and B as artificial viscosity is
added to the governing inviscid equations. Without going into detail, a smoothing

SHOCK -.//
,’i; ,"’

i i/i’." i.l’,M’"

......’’..\\’"""
v=6

FIG. 4. Behavior of computed bow shocks and isopycnics [or two solutions o]’ the blunt body problem as

artificial viscosity v is increased.
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operator is added to each component of the governing PDE system. This is frequently
done to damp computational oscillations or to "stabilize" a scheme. In this procedure
the inviscid boundary conditions are maintained. The present computational experi-
ment is therefore not strictly analogous to the model problems previously discussed
since in those problems the correct viscous and inviscid boundary conditions are the
same.

We use our numerical continuation procedure to proceed from one value of
artificial viscosity to the next. As shown in Fig. 4, as the artificial viscosity v is increased
the solutions tend toward each other. At some critical viscosity v 6.4 the solutions
coincide, and for greater values it seems that no nearby solution exists. Furthermore,
the determinants of the Jacobian matrices for the two solutions are of opposite sign and
tend toward each other as the critical viscosity is approached. It therefore appears that a
turning point has been found. Were it not for the above-mentioned boundary condition
question, we might be tempted by analogy with the model results to think of bothA and
B as spurious solutions (i.e., not the principal solution).

5. Concluding remarks. For the problems considered here, we have been able to
partially answer the questions posed in the Introduction. By examining the Burgers
equation in detail we see that the behavior of multiple finite difference solutions can be
quite complicated even for a very simple model. For this model we can understand some
of the behavior because we have a theory which predicts the crucial role of the cell
Reynolds number and we have a computational method to follow the solutions. These
results suggest a relationship between computational oscillations and multiple solutions
which we do not yet fully understand.

In more general circumstances the questions in the Introduction are more difficult
to answer. Nevertheless, our computational results for the blunt body problem and
other work previously cited suggest that the phenomena uncovered for the discrete
Burgers equation may also be found in more complicated practical problems. In the
absence of methods guaranteeing a unique solution, we can only recommend that
investigators be careful in implementing their methods and in checking their numerical
results. When implementing methods this means starting iterative or time-accurate
methods from different initial guesses, insisting on tight convergence criteria, repeating
computations with different mesh sizes, and even using different methods whose final
solutions satisfy the same system or difference equations. We remark that although time
accurate methods may converge to spurious solutions, they are apparently less likely to
do so than are general iterative methods. However, time accurate methods are usually
slower to converge to a steady state [ 10]. In judging the computed results we should be
suspicious of unanticipated oscillatory solutions and should check for qualitative
properties that the discrete solutions should inherit from the continuous problem. We
must be careful in evaluating results obtained with different mesh sizes. If such results
are greatly different we must obviously be cautious; however, even when the results are
nearly the same, we still cannot be completely sure that we are on the principal solution
branch.
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SOLUTION OF LARGE-SCALE SPARSE LEAST SQUARES PROBLEMS
USING AUXILIARY STORAGE*
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Abstract. Very large sparse linear least squares problems arise in a variety of applications, such as
geodetic network adjustments, photogrammetry, earthquake studies, and certain types of finite element
analysis. Many of these problems are so large that it is impossible to solve them without using auxiliary
storage devices. Some problems are so massive that the storage needed for their solution exceeds the virtual
address space of the largest machines. In this paper we describe a method for solving such problems on a
typical (large) computer and provide the results of some experiments illustrating the effectiveness of our
approach. The method includes an automatic partitioning scheme which is essential to the efficient
management of the data on auxiliary files.

Key words, large-scale sparse least squares, auxiliary storage, orthogonal decomposition, incomplete
nested dissection

1. Introduction and overview
1.1. Introduction. In this paper a method is presented for solving the linear least

squares problem

(1.1) min IIAx b

when the m x n matrix A is very large and sparse and has full column rank n. The
problems we wish to solve are so large that the use of auxiliary storage is essential
regardless of the numerical method employed. In some cases storage requirements
may even exceed the virtual address space of the largest machines, and therefore
auxiliary space cannot be managed implicitly by a paging algorithm. Our approach is
to break the large problem up into smaller subproblems which are processed sequen-
tially, eventually producing the solution to the original problem. Such an approach
requires a method for partitioning the large problem, a computational module for
processing the subproblems, and an algorithm for managing external files containing
intermediate results. In the remainder of this section, after giving some specific
examples of large-scale least squares problems, we survey possible numerical methods
and then describe the particular technique we have chosen for the computational
module. In 2, problem partitioning and data management are discussed. Section 3
presents numerical test results and observations.

1.2. Examples of large-scale least squares problems. In recent years least squares
problems of ever increasing size have arisen with ever increasing frequency. One
reason for this is that modern data acquisition technology allows the collection of
massive amounts of data. Another factor is the tendency of scientists to formulate
more and more complex and comprehensive models in order to obtain finer resolution
and more realistic detail in describing physical systems. Particular areas in which such
large-scale squares problems occur include geodetic surveying (Avila and Tomlin
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[1979], Golub and Plemmons [1980]), photogrammetry (Golub, Luk and Pagano
[1980]), earthquake studies (Vanicek, Elliott and Castile [1979]), and in the natural
factor formulation of the finite element method (Argyris and Br6nlund [1975], Argyris
et al. [1978]). An example of truly spectacular size is the least squares adjustment of
coordinates (latitudes and longitudes) of stations comprising the North American
Datum, to be completed in 1983 by the U.S. National Geodetic Survey (Kolata
[1978]). This enormous task requires solving, perhaps several times, a least squares
problem having six million equations in four hundred thousand unknowns.

1.3. Numerical methods |or sparse least squares. Several methods have been
proposed for solving sparse linear least squares problems (Duff and Reid [1976],
Bjfrck [1976], Gill and Murray [1976]). For our purposes the most important qualities
in a numerical method will be storage requirements, numerical stability, and con-
venience in utilizing auxiliary storage.

The classical approach to solving the linear least squares problem is via the system
of normal equations

(1.2) ATAx ATb.
The n x n symmetric positive definite matrix B Aa"A is factored using Cholesky’s
method into R rR, where R is upper triangular, and then x is computed by solving
the two triangular systems Ry =Arb and Rx y. This algorithm has several
attractive features for large sparse problems. The Cholesky factorization does not
require pivoting for stability so that the ordering for B (i.e., column ordering for A)
can be chosen based on sparsity considerations alone. Moreover, there exists well
developed software for determining a good ordering in advance of any numerical
computation, thereby allowing use of a static data structure. Another advantage is
that the row ordering of A is irrelevant so that the rows of A can be processed
sequentially from an auxiliary input file in arbitrary order, and A need never be
represented in fast storage in its entirety at any one time. Unfortunately the normal
equations method may be numerically unstable. This is due to the potential loss of
information in explicitly forming AaA and Aab, and to the fact that the condition
number o B is the square of that of A.

A well-known stable alternative to the normal equations is provided by orthogonal
factorization (Golub [1965]). An orthogonal matrix Q is computed which reduces A
to upper trapezoidal form

where R is n n and upper triangular. Since Q does not change the two-norm, we have

(1.4)

and therefore the solution to (1.1) is obtained by solving the triangular system Rx y.
The matrix Q usually results from Gram-Schmidt orthogonalization or from a sequence
of Householder or Givens transformations. Both the Gram-Schmidt and Householder
algorithms process the unreduced part of the matrix A by columns and can cause
severe intermediate fill-in. The use of Givens rotations is much more attractive in
that the matrix is processed by rows, gradually building up R, and intermediate fill-in
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is confined to the working row. This approach, implemented with a good column
ordering and an efficient data structure, is the basis for the computational module
described in 1.4.

Other direct nonnormal-equations methods for sparse least squares, including
those of Peters and Wilkinson [1970] (as implemented by Bj6rck and Duff [1980])
and Hachtel [1976], were considered, but these elimination methods require row and
column pivoting to preserve sparsity as well as some form of pivoting for stability,
necessitating access to the entire matrix. This feature greatly inhibits the partitioning
of large problems and the flexible use of auxiliary storage.

1.4. The computational module. The numerical method we use is developed in
detail in George and Heath [1980]. Our motivation is to combine the flexibility,
convenience and low storage requirements of the normal equations with the stability
of orthogonal factorization. The basic steps of the algorithm are as follows:

ALGORITHM 1. Orthogonal decomposition of A.
1. Determine the structure (not the numerical values) of B ATA.
2. Find an ordering for B (column ordering for A) which has a sparse Cholesky

factor R.
3. Symbolically factorize the reordered B, generating a row-oriented data struc-

ture for R.
4. Compute R by processing the rows of A one by one using Givens rotationsl
Steps 1 through 3 of Algorithm 1 are the same as would be used in a good

implementation of the normal equations method. These steps may be carried out very
efficiently using existing well developed sparse matrix software (George and Liu
[1979]). It is important to emphasize that the data structure for R is generated in
advance of any numerical computation, and therefore dynamic storage allocation to
accommodate fill-in during the numerical computation is unnecessary. The order in
which the rows of A are processed in Step 4 does not affect the structure of R.
Therefore the rows may be accessed from an external file one at a time in arbitrary
order. A suboptimal row ordering to reduce the amount of computation associated
with intermediate fill-in during the orthogonal decomposition phase was shown to be
effective in George and Heath [1980] and is used here. Alternatively, for problems
having widely varying weights or row norms it may be necessary to choose the row
ordering so as to maintain stability. Thus Algorithm 1 requires the same storage and
exploits sparsity at least to the same degree as the normal equations, allows convenient
use of auxiliary storage, and in addition is numerically stable.

2. Decomposition of A using auxiliary storage
2.1. Introduction. This section consists of two parts. The first describes an

algorithm for finding a column ordering and partitioning of A which lends itself to
the efficient use of auxiliary storage. The method uses slightly modified ideas and
techniques which have already been described in detail by George and Liu [1978],
so our presentation is brief and limited to showing our modifications and the relevance
of the scheme to the least squares problem. It is important to note that in some
contexts such partitionings/orderings arise as a natural by-product of the modelling
procedure (finite element analysis) or data acquisition (geodesy). In these cases, this
"preprocessing" algorithm would not be required.

The second part of this section deals with the utilization of the software described
in 1.4 and, the partitioning provided by Algorithm 2 of 2.2, along with files on
auxiliary storage, to solve very large least squares problems.
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2.2 Finding an appropriate ordering and partitioning for the columns o| A. In
the sequel it is convenient to work with the symmetric graph associated with the
normal equations matrix B ArA. The graph G (X, E) associated with B has n
nodes xi, 1, 2,..., n, which form X, and an edge set E consisting of unordered
pairs of nodes with {Xi, X]} E if and only if Bii -Bii # O, # ]. Thus the nodes xi
correspond to the variables of the least squares problem, i.e., to the columns of A.
Implicit here is the assumption that the nodes of G have been labelled as the columns
of A. Thus, a relabelling of the nodes of G corresponds to a symmetric permutation
of the matrix B, or equivalently, a column permutation of A. Given G without any
labels, finding an appropriate permutation of the columns of A can be viewed as
finding an appropriate labelling for G.

A graph G’= (X’, E’) is a subgraph of G (X, E) if X’ cX and E’ c E. For
YX,G(Y) refers to the subgraph (Y,E(Y)) of G, where E(Y)=
{{u, v} Elu, v Y}.

Nodes x and y are said to be adjacent if {x, y} is an edge in E. For Y X, the
adjacent set of Y is defined as

Adj (Y) {x X Yl{x, y } E for some y Y}.

A path of length is a sequence of edges {Xo, x 1}, {x x, X2}, {X/-1, Xl} where
all the nodes are distinct except for possibly x0 and xt. A graph G is connected if
there is a path joining each pair of distinct nodes.

A partitioning of G is an ordered collection of node sets

where Y/(’1 Y , #, and [= Y/= X.
Given a partitioning of G, the only numberings (labellings) we will be concerned

with in this paper will be compatible with . That is, each Y is numbered consecutively,
and nodes in Y are numbered before those in Y+I.

A subset Y X of the node set of G is a separator of G if G(X- Y) consists
of two or more connected components. A separator is minimal if no subset of it is a
separator.

As we shall see below, a desirable column ordering and partitioning for A is
provided by a nested dissection partitioning of the graph of B (George, Poole and
Voigt [1978]). The algorithm we use here can be described as follows, where G (X, E)
is the graph of B and/z is a user-supplied parameter.

ALGORITHM 2. Incomplete nested dissection partitioning.
1. Set V X, p 0, and n IxI.
2. If V , go to Step 4. Otherwise, let G(T) be a connected component of

G(V) and set p =p+ 1. If [Tl-<tt, set St, T; otherwise, find St,, a minimal separator
of G(T) which disconnects it into two or more components of approximately equal size.

3. Set V V-St,, n n -[St,[, and go to Step 2.
4. Set {Y1, Y2," ", Yt,}, where Y St,+l_, 1, 2,. ., p.

Apart from the inclusion of the threshold/z, and the omission of any specific labelling
strategyfor each St,, ourimplementation corresponds exactly to thatdescribed byGeorge
and Liu [1978, pp. 1054-1060], so the reader is referred there for details. For our
purposes, any ordering compatible with is acceptable, and the choice of/x is discussed
in 3. It should be obvious that/z governs the relative "completeness" of the dissection
procedure. An example of a nested dissection partitioning along with a compatible
ordering is given in Fig. 2.1.
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In order to avoid unnecessarily complicated notation in the following section, we
assume from now on that A has been reordered by columns and that the Y simply
consist of the appropriate consecutive subsequences of the first n integers. In other
words, the nodes of Y have been replaced by their labels.

p=7
Y1, Y2," YT} where Yi S8-i.

FIG. 2.1. An example o[a nested dissection partitioning ofa graph and an induced numbering of its nodes.

We now define a partitioning {Z1, Z2,’"’, Zp} of the row numbers of A,
induced by the column partitioning , as follows. Let

Z {k I::lj e Y’ akj : O}- Zt
/=1

i= 1,2,. ,p,

with Zo . The manner in which the Zi are defined above implies that in general,
for a sparse matrix A, if the rows of A are permuted so that those specified by Zi
appear above those specified by Z/I, then A will have block upper trapezoidal form,
as depicted in Fig. 2.2, for three diagonal blocks. Again, to keep the presentation
simple, we assume that the rows of A have been relabelled so that the Z consist of
consecutive integers, with those in Z preceding those in Z/I. We denote the sub-
matrices of A by Aij, 1 _-< i, j-<_ p, and our objective is to find a form for A such that

Aii 0 for > j.
As mentioned earlier, this process of dissection of the problem variables into

independent subsets may arise more or less automatically or may be carried out by
some means other than the one proposed above.

For example, in geodesy, observations between or among control points are
collected and tabulated by geographic region, so the variables (coordinates) and
observations are naturally arranged in a hierarchical structure. Moreover, automatic
subdivision can be implemented on the basis of specifying latitude and longitude
boundaries as separators for the coordinate sets. For a more detailed description of
this process, called Helmert blocking by geodesists, see Golub and Plemmons [1980]
and the references cited therein.

In the analysis of structures, the variables in the model are often subdivided
according to subassemblies, with each component being processed by an individual
design group. This may occur at several levels, leading to "multi-level substructuring."
This partitioning procedure together with the natural factor formulation of the finite
element method (Argyris et al. [1978]) leads to a sparse least squares problem having
block upper trapezoidal structure, as illustrated in Fig. 2.2.
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FIG. 2.2. A 23 x9 sparse matrix A partitioned by columns according to and the induced row

partitioning .
A special case of the block upper trapezoidal form is the so-called block angular

form, where Aj 0 unless ] or/" p. This form arises naturally in many mathematical
programming contexts, but more important from our point of view is that Weil and
Kettler [1971] have provided a heuristic algorithm for permuting a general sparse
matrix into block angular form. We have not used their algorithm, but in some contexts
it might serve as an alternate "preprocessor" (partition generator) to the one proposed
in this section. Golub and Plemmons [1980] have exploited this block angular form
structure in connection with computing orthogonal decompositions of problems arising
in geodesy.

2.3. Reduction of A using auxiliary storage. Before describing in detail how the
partitioning is used in exploiting auxiliary storage, we first review the basic computa-
tional procedure, without any reference to the actual implementation. For definiteness,
we assume I l- 3 and that A has the form shown in Fig. 2.3. The computation consists
of p major steps; the ith step results in the generation of Y/I rows of the upper
triangular factor R of A. During the ith step, the columns of Y/ and a subset of

columns from U p
j=+l Y are involved in the computation. We denote the column

numbers of this subset by Y[.
The computation involved in the first step is depicted in Fig. 2.3, and all the

other major steps are similar, generating the sequence of successively smaller matrices
A1, A2, A3,"’, Ap. At the first step, which transforms A A1 to A2, the matrix
[,4 ’"11,,A1] is reduced to upper triangular form using Algorithm 1 described in 1.4.
The matrix consists of those columns of A 12 and A 13 which are non-null. (Thus,
1 is simply a "compressed" version of A12 and A13.) The first IYxl columns of the
resulting upper triangular matrix are the first YI columns of R the remaining columns
are "compressed," bearing the same relationship to R as A does to [A121A 13]. The
rows corresponding to these latter columns are "expanded" and put on the top of the
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A11 A 12 A13

A22 A23

A:A

All A1

A22 A25

FIG. 2.3. Pictorial description of the first step of the Il step reduction o[A to upper trapezoidal [orm.

A22 A23

A2

ROWS OF R (COMPRESSED)

ALGORITHM_1.4
OF

_!

FIG. 2.4. Depiction of the second step of the block-reduction ofA to upper trapezoidal 1orm.
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second row-block of A, yielding A2. The next step of the computation is depicted in
Fig. 2.4, and the final step has no special features.

Thus in the general case, after i- 1 steps of the reduction process, the matrix Ai
will have the form shown in Fig. 2.5.

Ai,i4 Ai,p

App

Fzt3.2.5. Block structure of Ai.

Note that since we assume that the rows of Ai are stored on auxiliary storage at
all times, the only storage needed at the ith stage of the computation is that required
for the presumably sparse upper triangular matrix R, where

Another important practical observation is that in Algorithm 1 of 1.4, and in the
one that is described in the sequel, there is no restriction on the order that the rows
of any of the As are stored so that any beneficial row ordering may be used.

In what ollows it is helpful to have names for certain subsets of the rows of
We define the set of rows of As having nonzeros in columns which interesect Y by
Z, and we use Z to denote the remaining rows of A. Thus, it is precisely those
rows in Z which are involved in the ith major step of the computation.
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For simplicity, we have not included the right-hand side in our Figs. 2.3-2.5, but
we intend that it be processed simultaneously with the rows of A, and carried along
in parallel. In particular, throughout this paper, when we refer to processing a "row
of A" or an "equation," we implicitly include the corresponding element o b, the
weight (if any), and so on. Our program ormally allows for weights, and in order to
handle them uniformly (i.e., to avoid distinguishing between virgin rows in Ai and
those that have been transformed), a weight of 1 is associated with transformed
equations.

We are now ready to describe the algorithm for reducing A, which involves the
use of four files. These files may be stored on tapes, disks, drums; only serial access
to the files is necessary. The files are:

1. R-file: accepts the rows of R as they are computed.
2. C-file" (current file) at the beginning of the ith major step of the computation,

contains the rows of Ai in arbitrary order.
3. Z-file’ during the ith step of the computation, contains the rows in the set

Zi; that is, those rows o A that are involved in the computation at the ith
major step.

4. Z’-file" at the beginning of the ith step, this file is empty. The C-file is read,
and split into the Z-file and this file, which receives the rows of Ai in the set
Z’. After the computation o Ri is performed, the rows of/ii are written on
this file, and the Z’-file becomes the C-file lor the next step o]’ the computation.
(It now contains the rows of

Thus the Z-file is a scratch file, and the roles of the C-file and Z’-file alternate at
each succeeding major step of the computation.

ALGORITHM 3. Block reduction of A to upper triangular form.
For 1, 2,..., p do the following:
1. Rewind the C-file, Z-file, and Z’-file. Read the equations from the C-file one

by one, and for each do the ollowing:
1.1. If the equation number is in Zi, write the equation on the Z-file and

record the structure it contributes to the normal equations matrix HSHi,
corresponding to the matrix Hi

1.2. If the equation is in Z, write the equation on the Z’-file.
2. Order the equations so that HSHi suffers low fill-in, restricting the ordering

so that the variables in Y appear last.
3. Create the data structure for
4. Rewind the Z-file. Read the equations from it and compute Ri, also applying

the transformations to b.
5. Write the rows of R, on the R-file along with the transformed elements of b.
6. Write the rows of/i on the Z’-file, along with the transformed elements of b.
7. Reverse the names of the C-file and Z’-files.
It should be clear that the combination of the structure recording part of Step

1.1 along with Steps 2, 3, and 4 is essentially Algorithm 1, described in 1.4. The
only modification is the adjustment of the ordering provided by Algorithm 1 so that
variables in YI appear last; all others remain in their same relative position. The
ordering of the variables of Y that is provided in Step 2 is recorded so that the rows
of R written on the R file can be processed in the correct order in the back substitution.
(Note that Algorithm 2 in 2.1 only provided the partitioning and did not provide
an ordering or each

At the conclusion of the reduction of A to upper trapezoidal form, along with
the simultaneous reduction of b, the rows of R and the corresponding right-hand side
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Z’ FILE BECOMES ....""
C-FILE FOR THE ....
NEXT STEP T(STEP 7)

STEP iOF THE
REDUCTION ROWS

STEPS 2-6 OF THE
REDUCTION
PROCEDURE

FXG. 2.6. Diagram o[ the data flow o[ the algorithm for reducing A to upper trapezoidal [orm.

elements (y in (1.3) of 1) will be on the R-file, with the "write head" positioned at
the end of the last record. The following simple back substitution is then used to
compute x.

For n, n- 1,. , 1 do the following:
1. backspace the R-file;
2. read the ith row of R and corresponding right-hand side element yi and

compute
3. backspace the R-file.

3. Numerical experiments and observations
3.1. Introduction. This section contains results of some experiments performed

using an implementation of the algorithms described in 1.4 and 2. Our test problems
are of various sizes (ranging from 1,444 equations and 400 unknowns up to 17,946
equations and 4,554 unknowns) and of two different types. One class of problems is
typical of those that would arise in the natural factor formulation of the finite element
method (Argyris and Br6nlund [1975]), and the second class typifies those arising in
geodetic adjustment problems (Golub and Plemmons [1980]). The descriptions of the
problems we provide include only the details necessary to characterize their size and
structure; for important information on the physical origins and their mathematical
models, the reader should consult the references.

3.2. Test problems. Our finite element test problems are associated with a q x q
grid consisting of (q- 1)2 small squares, as shown in Fig. 3.1 with q 3. Associated
with each of the n q2 grid points is a variable, and associated with each small square
are four equations (observations) involving the four corner grid points (variables) of
the square. Thus, the associated coefficient matrix is (n =q2)x(m =4(q-1)2), as
illustrated in Fig. 3.1.

Our second set of test problems were also derived from a q x q mesh, but of a
rather different type. The purpose here is to construct problems typical of those arising
in geodetic adjustments. The mesh can be viewed as being composed of q2 "junction
boxes," connected to their neighbors by chains of length l, as shown in Fig. 3.2 where
q 3 and 4. There are two variables associated with each of the 5q2+ 2q(q- 1)
(3(/-1) + 1) vertices in the mesh, r/observations associated with each pair of nodes
joined by an edge (involving four variables), and r/observations associated with each
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FIO 3.1. A 3 x 3 finite element grid and its associated 16 x 9 least squares coefficient matrix arising in
the natural ]’actor formulation of the finite element method.
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\/

FIG. 3.2. Idealization of a 3 x 3 geodetic network having connecting survey chains of length 4.

triangle in the mesh (involving six variables). Thus, the associated least squares
problems have n 10q2 + 4q(q 1)(3(/- 1) + 1) variables, and m r/(12q 2 + 2q(q
1)(111-1)) observations. In typical real problems, is around 5 or 6, so we set 5
in our experiments, yielding n 62q2- 52q and m r/(120q2-108q). In our experi-
ments we set r/= 2, yielding m/n 4 for large q.

3.3. Numerical experiments. Since one of our main objectives is to provide a
means of solving very large problems on computers having limited main storage,
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our first experiments involve solving a sequence of problems of increasing size, using
a fixed amount of array storage. Of course, as the problems increase in size, the
dissection process which provides the partitioning (Algorithm 2 in 2) must be allowed
to proceed further, creating more blocks. The results of these experiments are summar-
ized in Table 3.1. All tests were made on an IBM 3033 at the Oak Ridge National
Laboratory. The times reported are in seconds and the storage in words.

TABLE 3.1.
Summary of test results showing storage and excecution times for a sequence of problems, where the

maximum total amount offast storage is fixed at about 30,000 words.

1. Geodetic network problems

Block Factor Total
Junction size Number Maximum and solve elapsed

Unknowns Equations boxes limit blocks storage time in time in

/z p used seconds seconds

402 1,512 3 500 1 7,430 1.69 4.69
1,290 4,920 5 1,500 1 25,367 7.21 22.77
2,674 10,248 7 1,500 3 32,070 22.7 57.69
4,554 17,469 9 1,500 7 30,141 46.18 107.40

2. Finite element grid problems

Block Factor Total
size Number Maximum and solve elapsed

Unknowns Equations Nodes limit blocks storage time in time in

/ p used seconds seconds

400 1,444 20 500 1 10,029 3.10 5.97
1,225 4,624 35 1,000 3 30,547 20.78 32.23
2,500 9,604 50 1,000 7 28,462 72.98 96.10
4,225 16,384 65 500 23 28,987 142.81 208.20

The factor and solve time includes the orthogonal decomposition time in applying
Algorithm 1, together with the final back substitution time in computing the least
squares solution. The total elapsed time also includes I/O processing and represents
the total amount of IBM 3033 time in solving the problem.

The maximum storage used includes all array storage, storage for permutations,
bookkeeping, etc., in words on the IBM 3033.

Our second set of experiments was designed to demonstrate the influence of the
block size limit/z on execution times and total storage requirements. We solved one
moderately large-scale problem from each of the two classes a number of times, with
different values of/x, leading to different values for the resulting number of blocks p.
The results of these experiments are summarized in Table 3.2.

3.4. Observations. 1. In Table 3.1, the factor and solve times, as well as the
total elapsed times, increase in a roughly linear fashion as the problem sizes go up
under the constraint of fixed maximum amount of in-core storage.

2. For the two problems represented in Table 3.2, the factor and solve times are
relatively insensitive to the block size limit/z. These times gradually increase for the
geodetic network and oscillate for the finite element grid. Also, the maximum storage
used drops considerably at first and then levels out as the block size limit decreases
in each problem.
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TABLE 3.2
Summary ol: results ]or the solution o] a single problem lrom each class, using

different levels of blocking.

1. Geodetic network
n 2,674 unknowns, m 10,248 equations

Total
Block size Number Maximum Factor and elapsed

limit blocks storage solve time time in

t p used in seconds seconds

3,000 1 53,858 17.73 71.40
1,500 3 32,070 22.27 57.69
800 7 17,966 23.66 52.71
500 18 13,699 27.56 61.80

2. Finite element grid
n 2,500 unknowns, m 9,604 equations

Total
Block size Number Maximum Factor and elapsed

limit blocks storage solve time time in
p. p used in seconds seconds

2,000 3 73,002 72.58 106.80
1,500 5 46,178 68.73 96.00
1,000 7 28,462 72.98 96.10
500 15 23,332 69.11 100.80

3. The fact that finite element problems generally result in a less sparse observa-
tion matrix than geodetic network problems has the obvious result. In each of our
tables the storage and execution times are larger for the finite element problems.

4. One possible disadvantage of the use of our automatic blocking program
(Algorithm 2) is that the entire structure of A 7"A must be initially stored in-core in
order to apply the nested dissection scheme. However, in practice this would not often
be a serious limitation since some preliminary blocking is usually provided for the
larger problems as as a by-product of the modelling procedure (finite element analysis)
or data acquisition (geodesy).

5. In each of our problems the time required for the automatic blocking provided
by Algorithm 2 turns out to be small in comparison to the total elapsed time. These
automatic blocking times are not reported separately in Tables 3.1 and 3.2; however,
Algorithm 2 requires only .78 seconds out of a total elapsed time of 208.20 seconds
for our largest problem.

6. Our scheme is storage effective. In each test problem the maximum storage
used is a modest multiple of the number of variables n. In summary, our numerical
experiments demonstrate that the approach taken in this paper can be used to solve
large-scale least squares problems using a relatively small amount of in-core storage.
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THE MULTI-GRID METHOD FOR THE DIFFUSION EQUATION WITH
STRONGLY DISCONTINUOUS COEFFICIENTS*
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Abstract. The subject of this paper is the application of the multi-grid method to the solution of

-V. (D(x, y)VU(x, y))+(x, y)U(x, y)=f(x, y)

in a bounded region f of R where D is positive and D, tr, and f are allowed to be discontinuous across
internal boundaries F of fL The emphasis is on discontinuities of orders of magnitude in D, when special
techniques must be applied to restore the multi-grid method to good efficiency. These techniques are based on
the continuity of DVU across F. Two basic methods are derived, one in which the approximating finite
difference operators on coarser grids are five point operators (assuming the finite difference operator on the
finest grid is a five point one) and one in which they are nine point operators.

Key words, multi-grid method, diffusion equation, discontinuous coefficients

1. Introduction. The subject of this paper is the application of the multi-grid
method to the solution of

-V. (D(x, y)7U(x, y))+or(x, y)U(x, y)=f(x, y), (x, y) f,
(1.1a)

v(x, y).D(x,y)VU(x,y)+v(x,y)U(x,y)=O, (x, y) 0f,

where f is a bounded region in R 2 with boundary 0f, v is the outward normal to 0f, D
is positive, tr and y are nonnegative, and D, tr, and f are allowed to be discontinuous
across internal boundaries F of f. We make the natural assumption that

(1.1b) U and/x (DVU) are continuous at (x, y) for almost every (x, y)F,

where for each (x, y) F,/ (x, y) is a fixed normal vector to F. (The "almost every" is
necessary to exclude juncture points of F, points where two pieces of F intersect and
where the continuity of/ (DVU) does not make sense.)

The emphasis in this paper is on strong discontinuities in D. Indeed, when D has
jumps of a factor of up to an order of magnitude across F, the multi-grid method as
described in [2] works quite well, but whenD has jumps of orders of magnitude across
F, the method of [2] exhibits poor convergence. The primary reason for this failure is as
follows. IfD jumps by orders of magnitude across F, then so also must VU in order that
(1. lb) be satisfied. BecauseDVU is the entity that is continuous, it is the error inDVU,
not the error in VU, that is smoothed by relaxation sweeps. In contrast, the method of
[2] was really based on the continuity of VU and on the smoothing by relaxation sweeps
of the error in VU. Thus, [2] recommended bilinear interpolation of U, which
approximates the continuity of VU across F. IfD jumps by orders of magnitude, then a
more appropriate interpolation is one which approximates the continuity of DVU
across F. (Actually the situation is more complicated than described above. We have
found that if F consists of many line segments, then even whenD jumps by only an order
of magnitude across F, the method of [2] can perform badly. In this situation the number
of discontinuites in D apparently plays a role.)

* Received by the editors May 30, 1980, and in revised form April 27, 1981. This work was supported by
the U.S. Department of Energy under contract W-7405-ENG.36.

Theoretical Division, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 87545.
t Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
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Grid to grid interpolation is not the only problem. One must also guarantee that for
a given grid, the difference equations on the next coarser grid approximate those on the
given grid; the design of such difference equations is again based on the continuity of
DVU, not on that of VU, as in [2]. This paper discusses two such designs: one which
gives rise to five point difference operators on all grids and one which gives rise to nine
point operators on all but the finest grid (assuming, of course, that the finest grid
difference operator is a five point one).

The above issues are discussed in more detail in the remainder of this paper. But
the main finding of this paper is that the multi-grid method for (1.1) can be made to
work with its usual good efficiency.

The application in which we were most interested was the neutron diffusion
equation, in which D, tr, and F are piecewise constant in (1.1); indeed all of the
numerical examples in 9 are for this case. However, neither the algorithm nor its
efficiency depends on the assumption of piecewise constancy; hence, the paper is posed
in terms of (1.1).

The neutron diffusion equation is, of course, of great interest by itself. The
application that initially motivated us, however, was the multi-group neutron transport
equation (the linear Boltzmann equation in which the energy variation is approximated
by coupled transport equations). There is a technique called diffusion synthetic
acceleration [1], for accelerating the solution of the multi-group neutron transport
equation by solving auxiliary multi-group neutron diffusion equations. This technique
requires storage of data for many groups for the transport equation and for its
approximating auxiliary diffusion equation. The current code, TTDAMG, which
implements this technique has the constraint that the storage for each group not exceed
the storage available in the small core memory of a CDC 7600. This constraint puts a
premium on storage and dictates some of the decisions we had to make; we indicate,
however, when this is the case.

For both TTDAMG and the neutron diffusion equation per se, a large percentage
of problems encountered in practice are eigenvalue problems. We, however, defer
discussion of eigenvalue problems to a future communication.

An outline of the remainder of this paper is as follows. In 2 we discuss the
difference scheme. In 3 we review the multi-grid method. In 4 we discuss the choice
of a relaxation scheme. In 5 we discuss how the difference operators on coarse grids
should be defined. In 6 we give some details of implementation. In 7 we study a
special problem of discretization near a juncture point. In 8 we discuss some patho-
logical difference equations for which the techniques in this paper are likely to fail.
Finally, in 9 we present some numerical examples.

2. The difference scheme. For simplicity we assume from now on that is a
rectangle (0,X)(0, Y); neither the algorithm nor its efficiency depends on this
assumption. As usual we set up a finite difference grid

(2.1) {0 X0<X <’" "<X. =X}X {0=y0<Yl <.- "<Ym Y}.

Define hi xi /1- xi, kj =yj/1- y. Given such a grid it is natural to assume that

(2.2) the internal interfaces F are composed of horizontal and vertical line segments.

We also assume that

(2.3) F lies on grid lines.

The difference scheme can now be derived as in [11, pp. 184-190] or [12, pp. 31-38].
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We do not want to repeat that derivation here, butwe want to comment on how (1. lb) is
incorporated into the difference scheme. In the derivation, for each interior (xi, yj), one
integrates 1.1a) over the four rectangles with common vertex (xi, yj) whose union is the
rectangle Ri, with vertices

One uses Green’s theorem to convert the appropriate volume integrals to line integrals.
When one sums these four quantities, the interior line integrals cancel ecause of (1. lb)
and one is left with line integrals over the boundary of Ri,j. For (x, yj) 0f one
integrates only over rectangles in the interior of lq. The following difference scheme
results when the line integrals are approximated:

-Ai,i+l/z(Ui,i+l U,i)-Ai,i-i/z(Ui,i- Ui.i)-Bi+l/Z,i(Ui+,i Ui,i)

(2.4)

where

B,-,/z,i( Ui-l,i Ui,i) + Ci,iUi, F,i, O<--i<-_n, O<--j<__m,

Ai,)+l/2 -- (Di+1/2d+1/2 -I-Di-1/2,j+l/2) hi-1 +hi.

1 (k-l+kj)sBi+l/2,.i (Di+l/Z,i+l/2 +Di+1/2,-1/2)

F,i (hi-lk-lfi-1/2d-1/2 + hi-lk/fi-1/2d+l/2 + hik/fi+l/2d+l/2 + hiki-lfi+l/2,i-1/2),

(2.5)

1c,. (h,_k_:,_/./_/ +h,_k/,_/./+/ +h,k/,+/./+/ + h,k/_,+/._l/)

0 if0in, 0j<m,

k_ +k
+ 2 y,/ ifi=0orn,

h_ +h
2 y,/ ifj=0orm,

where

Di+1/2,+1/2 =D xi +-, yj +

etc. In (2.5) we employ the conventions that h is zero if < 0 or _-> n, that kt is zero if
< 0 or _-> m, and that g(x, y) is zero if (x, y) f, g D, F or cr; these conventions

permit (2.5) to make sense even for (xi, y) 01L
We remark that assumptions (2.2) and (2.3) are not really essential but that if they

are not made, one must resort to a homogenization procedure to define the
D+1/.. / /z’s in the above derivation. In this case smearing of the interfaces occurs; we
prefer not to deal with this issue in this paper.
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3. A summary o| the multi-grid method. In order to describe the special features
of the multi-grid method for (1.1), we need to develop some notation and describe the
basic philosophy behind the multi-grid method. Hence, suppose that the grid in (2.1) is
denoted by GM with mesh size ht and that there is a sequence of grids G 1,.. ", G
with corresponding mesh sizes h >" >h. For simplicity we assume that these grids
are uniform square grids. This assumption implies no loss in generality since we may
rewrite (2.4) on a grid with uniform h k by redefining the coefficients in (2.5). We
further assume that hk / 1/hk 1/2 since this ratio of mesh sizes is the most efficient [2].

Now we write (2.4) as

(3.1) LWU F.
Let us denote an approximate solution of (3.1) by u and measure how good an
approximation it is by examining the size of the residual r F -LWuM. With usual
iteration procedures such as SOR, for example, the first few iterations usually seem to
have fast convergence, with residuals rapidly decreasing from one iteration to the next,
but then the convergence rate levels off to an asymptotic value and can become very
slow. A closer examination in the spirit of [2] shows that convergence is fast as long as
the error V U u has strong fluctuations on the scale of the grid G. When the
convergence rate slows down, the error nearly solves the homogeneous equations, and
[rM is small compared to ILllv I, where [L is, for example, the maximal coefficient
of L. Hence, when convergence slows down, the error V can be approximated on
the coarser grid G-1. One does this by approximately solving the coarse-grid equation

(3.2) LM-lvM--1 =fM--1 _Iw--1 (FM __LM/)M),

where vM- is to be the coarse-grid approximation to V, v uM is the last iterate on
grid GM, and whereI- denotes an interpolation operator from GM to G-1. When
this problem is sufficiently solved, one performs vM vM +IM_VM-l, where I_1
denotes an interpolation operator from GM- to G, and one expects that the vM thus
obtained is a better approximation to UM than the old vM. The process is now recursive,
of course, since (3.2) is itself solved by relaxation and if convergence slows down for
(3.2), one transfers to grid GM-2, etc. On grid G , of course, one either solves the G
problem directly or iterates until the G problem is sufficiently converged.

There are a number of details that need to be specified in the above description. For
example, the operatorL has so far been defined only for k M, in which case it is given
by (2.4); the interpolation operators I have not yet been defined; and a suitable
relaxation scheme has not been selected. These issues are discussed in the following
sections. To some extent they are unfortunately intertwined; for example, some
remarks in 4, on relaxation schemes, assume certain characteristics about com-
munication between grids, that is, aboutLk andI these assumptions become clear, we
hope, in 5.

4. Choice of a relaxation scheme. In [2], [3], and [7] heavy use was made of
Fourier analysis in analyzing relaxation schemes. For (2.4), Fourier analysis is not really
valid because of the huge jumps in D. A review of some of the conclusions in [2] will be
helpful, however. In [2] the equation

oU(x, y) oU(x, y)
(4.1) LU(x, y)=a 2 +c =F(x, y)

OX 0y 2

is studied. The finite difference form of (4.1) on grid Gk is
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(4.2) k k uk+,t --2uk,t + uk-a,t uk,o+a --2uk,t + Ua,0 --1 kL U, =a
h

+c
h =F,,

whereU,o=Uk (ahk, hk ), k FkF, (ahk, flhk), a, fl integers.
Point Gauss-Seidel relaxation consists of scanning the points (a, fl) in some order,

for example, lexicographic order, and replacing u,o by fi, such that (4.2) is satisfied;
thus, point Gauss-Seidel is

Ua+l, -2a, +a -1, Ua,fl+ -2a,o +a,--I ka h +c h F,.

Let v Uk u and Uk . To study the 0 (01, 02) Fourier component of the error
functions v and before and after the relaxation sweep, put v,o Aoe1+) and, oe (o, +o). Then

a (v + a, 2, + a,o + c (v.,o + 2, , 0,

so that

(a e o + c eO)Ao + (a e- +c e- 2a 2C)o O.

Hence, the convergence factor of the 0 component is

a e i1 q-c e i02

2a + 2c a e-i c e -io

Define 101 max (1011, 1021). The quantity of interest in the multi-grid method is the
smoothing factor

/2= max /x(0),
/2_-<10 I_-<.

since 7r/2 _--< 101 _--< 7r is the range of high frequency components on the grid, that is, the
range of components that cannot be approximated on the next coarser grid. For the case
a c,/2 =/x (7r/2, arccos -) 0.5. For the degenerate case a << c,

which approaches 1 as a 0. Hence, for this case, point Gauss-Seidel is not a good
relaxation scheme; however, line Gauss-Seidel by lines in y is a good scheme since then

and

a
tz(0) 12(a +c -c cos Oz)-ae-’’[

max 5-1/2
a

a

In the degenerate case c << a, line Gauss-Seidel by lines in x is a good relaxation scheme.
Another way of looking at the case, a << c, is as follows. The points in a given y- line

are tightly coupled together, but there is weak coupling between two adjacent y-lines.
Line Gauss-Seidel by lines in y relaxes the y-lines simultaneously and essentially
reduces to point relaxation in x of blocks of points (the y- lines) for which the smoothing
[actor is good.
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Let us now examine a model problem for (2.4), namely a problem with large
constant D -D1 in a central rectangle surrounded by a rectangle with small constant
D DE,D >>DE. Clearly point Gauss-Seidel is an acceptable scheme in each of the two
regions. The problem is that the points in theD region are strongly coupled compared
with their coupling to the DE region. Hence, in analogy with the a << c case of (1.2)
above, the whole block of D points should be relaxed simultaneously. Fortunately,
such a drastic measure is not necessary since the D1 region and its coupling to the DE
region can be resolved on coarser grids. Hence, it is only on the coarsest grid of all that
the strongly coupled block of points, descendents of the D block on the finest grid,
needs to be relaxed simultaneously; alternatively, of course, the coarse grid problem
can be solved directly. On the other grids point Gauss-Seidel is sufficient. This
conclusion has been verified experimentally.

One would like to conclude that for grids with uniform h k, point Gauss-Seidel is
always good enough for (2.4). Such is, unfortunately, not the case. Consider a problem
in which there are boxes with large D along one of the diagonals of (0, X) x (0, Y) and
in which D is small elsewhere. On coarser grids such a pattern can give rise to a set of
strongly coupled points which are coupled together like a one-dimensioal "tail".
Depending on how the coarse-grid difference equations are derived, this "tail" may not
be represented on the next coarser grid. In such a case it is necessary to use block
relaxation in which the "tail" is the block of points relaxed simultaneously. Such a
relaxation scheme is not difficult in principle since, just as with line relaxation, only a
tridiagonal system needs to be solved for each such block of points. (In case of strongly
coupled sets that include two-dimensional "heads" together with one-dimensional
"tails" only the "tails" need to be simultaneously relaxed.) It is also not difficult in
principle to devise an algorithm to detect the one-dimensional sets of points that are
strongly coupled together. We shall refer to the detection and block relaxation of
one-dimensional "tails" as SCOD (strongly coupled one-dimensional) block relax-
ation; SCOD extends point and line Gauss-Seidel to more general situations. We have
not implemented SCOD in TI’DAMG since the appearance of one-dimensional "tails"
in that framework is rare. An additional comment is that identification and relaxation of
one-dimensional "tails" does not appear to be very amenable to implementation on a
vector machine; perhaps a more attractive possibility for vector machines is local
relaxation, in which the convergence is pointwise monitored and only those points (and
their neighbors) which have not converged by some criterion are relaxed.

There is a final problem which falls under the heading of choice of a relaxation
scheme, and this is concerned with the choice of a relaxation scheme for the coarsest
grid. In neutron diffusion problems, it is quite common for tr in (1.1) to be very small in
comparison with D. In the initial development of our codes such a problem exhibited
the behavior of excruciatingly slow convergence on the coarsest grid. To see why this
happens, assume for the moment that cr is constant. Then in (4.3) for the coarsest grid,
we have

2
/-t (0, O)

2 +o.h -Thus if crh is small, convergence will be slow for the coarsest grid. Actually, this use of
local mode analysis is strictly valid only for boundary conditions which are not affected
by adding a constant to the solution, since for a low frequency mode like (0, 0), the
effects of boundary conditions cannot be ignored. Indeed, for Dirichlet boundary
conditions we have never observed this phenomenon of excruciatingly slow con-
vergence; this is because Dirichlet boundary conditions tie down the constant part of
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the solution on the coarsest grid. This is not true or the boundary condition in (1.1),
however. For example, if 3’---0, then the addition of a constant will not affect the
boundary condition, leaving the difference equation alone to determine the constant
part of the solution.

There are two solutions to the above problem. One is to use a direct solution on the
coarsest grid. The other, which proved quite useful in another context [4], is as follows.
Consider first the case 3"---0. After each iteration on the coarsst grid, compute a
constant c such that L (u + c) [1 on the average. That is,

E
Then replace u,. by u ,i + c.

The above procedure of constant addition worked quite well in the early
development stages of our codes. However, we soon found examples orwhich it did not
work well. These examples are characterized by orders of magnitude jumps inD across
interfaces, and the problem in these examples is related to one discussed above--at
least one subset of coarse grid points has points strongly coupled to themselves and
weakly coupled to the remaining grid points, so that the constant addition procedure is
not effective. A cure is to identify such subsets and compute a separate constant or each;
his is really a type of block relaxation or each subset, and the necessity or doing it or
each subset was realized by de la Vall6e Poussin (the grandson, not the patriarch) [10] in
his quite similar procedure. If the blocks are too large, however, the constant additions
will not be enough, and still coarser grids will be needed for fast convergence.

One might think that if the coarsest grid were as coarse as possible (four grid
points), then all the grid points would be coupled with equal strength. Such is not the
case. It is easy to give an example in which the coarsest grid has four points, three of
which are strongly coupled and weakly coupled to the remaining grid point. Thus
whether one is using the constant addition algorithm or solving directly for blocks of
strongly coupled points, it is necessary to identify subsets of strongly coupled points on
the coarsest grid. Rather than implementing an algorithm to identify subsets of strongly
coupled points, we resort to direct solution on the coarsest grid; this places a constraint
that the coarsst grid be coarse enough that direct solution is inexpensive in both storage
and time, but we think that this constraint is not too severe.

In the current version of TTDAMG, the mesh in (2.1) is allowed. For the neutron
diffusion equation in one space dimension one can derive [12, p. 72] the criterion for
good truncation error that x/tr/Dh < 1; this criterion has been shown numerically to be
valid also in two space dimensions. The mesh allowed in (2.1) provide at least some
flexibility in adapting the mesh to a given pattern of piecewise constant D’s, and tr’s;
typically this results in regions where hi << kj or where hi >> kj. Thus line relaxation is
necessary and is, in fact, the basic relaxation scheme for that code. Sometimes it
happens that hi >> k in some region and hi << k in another region. This situation requires
alternating line relaxation, and there is an option in our codes to use this instead ot line
relaxation by lines in x or lines in y alone. One could avoid the above situation and use
only uniform grids by using local noncoextensive grids [2]; we have implemented this in
certain simple situations, but our implementation is as yet incomplete.

5. 12ommunieation Ietween grids. The problem remains of choosing inter-
polation operators I

_
1, residual weighting operators I 1, and difference operators Lk,

k <M. In the early development of our codes we used bilinear interpolation for I-1,
and we used I-1 (I-1)*, theadjoint operator, for residual weighting. For Lk-a,
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k <-M, we used a fixed weighting of the coefficients ofLk compatible with the weighting
I-, as suggested in [2]. With this approach, problems with orders of magnitude jumps
in D (or problems in which F consisted of many line segments) exhibited unacceptably
slow convergence rates, even slower than straight SOR. For these problems in general,
an examination of the 12- norm of the residuals seemed to indicate that communication
between grids was good but that for some reason the smoothing rate was bad; in
particular, there seemed to be no reason to suspect th interpolation procedure to be at
fault. At this point another approach to generating Lk-1 from Lk yielded some insight.
In the neutron diffusion equation, D 1/(3XT), where XT is the total cross section.
Hence, a reasonable approach would seem to be to generate EkT-1 from by using a
fixed weighting and to define Dk-1 1/(3XkT-1). When this was done, one observed in
general huge jumps in the/2-norms of the residuals after interpolation. This obser-
vation led to the suspicion that the wrong interpolation procedure was at the root of the
problem even though it did not seem to manifest itself with the first way of definigLk-.

Indeed bilinear interpolation approximates the continuity of Ux and Ur, whereas,
whenD has jumps of orders of magnitude, (1. lb) makes it more natural to approximate
the continuity in x of DUx and the continuity in y of DUy, at least at nonjuncture points
of F. We describe this new interpolation operator, J-l, below. First, however, we
present an alternate method of viewing the problem of communication between grids.

This alternate method is motivated by the straightforward application of the
multi-grid method to the finite element method. Nicolaides [9] observed in this
situation that it is automatically the case that

(5.1) I -1 (I/--1)*
and that

(5.2) L-I=I-ILI_I,
where

(5.3)

(I-lwk)i ((I ):)Wki (I_,e, W)
(ei-’, 1)

(/_,e/-l, e)
Ei,.i-- (e/-1, 1)

(Here is the index of a point in the (k 1)st grid, ek is the function on the kth grid which
vanishes at all grid points except the ith point, where its value is 1, and 1 in the
denominator of (5.3) is the function which has values 1 at each point of the (k 1)st grid.
This denominator does not appear in [9], since the equations there are not written in the
differential scale. See also the generalization in [3].)

We shall refer to (5.1) and (5.2) as the automatic prescriptions for residual
weighting and for definition of Lk, k <M, respectively. The automatic prescriptions
have many desirable features, as we discuss below. These features, however, are a result
of the choice of I_, not of the mechanics per se of performing (5.1) and (5.2). Indeed,
if I_ is taken to be bilinear interpolation, the automatic prescriptions result in an
algorithm whose performance for problems with orders of magnitude jumps in D is no
better than the first algorithm described above. Hence, we turn now to the description
of the new interpolation operator, J_l. J,_l may be described in terms of Figs. 1 and 2,

k kwhich show a portion of grids k-1 and k respectively. Let v =Jk_luk-1. For
coarse-grid points imbedded in the fine grid, the scheme is obvious, i.e., vkFaF k

1A IC,JC

etc. Along horizontal lines embedded in the coarse grid, the continuity of DUx may be
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approximated by BF k+2,JF(/)IF+2,JF--I’)F+ 1,./F) BkF+ 1,./F()/kF+1 --/) klF,JF)’ i.e.,

+1.ruIc.rc +BF+2,JF IC+(5.4) k BF k-1 uk-1
1)IF+ I,JF BkF+. +Bkr+2.tr

(Note that we have used the indices for the B’s that are used in our codes, instead of the
notation used in (2.4).)

(IC ,JC + I]

Ak-IIC,JC +

BII+ i,jc+

k-I
BIC+I,JC

n

(IC,JC]

(TC+ JC+l]

Ak-I
IC+l, JC+l

(IC + t, JC)
FIG. 1. Coefficients [or grid Gk-1.

(ZF, J F+ 2)(

AIF,jF+2I-

(.IF, JF+I)(

Ak
ZF,JF-I-I ["

(ZF,JF)C

(IF+ I,JF+2)

Bk
I-]’

k []
ZF +1, JF+2 BIF+2, ,IF+2

kAZF JF+2

(2) IFoJF+

Bk
];F+I,JF+I

() ZF+ t,,F+O

kB]:F+2,JF+I

kAIF+ I,JF+I

IF, JF " ]F + I,JF

BF+2,JF]:FI,JF
(IF+I,JF)

FIG. 2. Coefficients for grid Gk.

)(IF+2, JF+2)

"] AIF+2,JF+2

) (IF+2,JF+I)

AF+2, JF+I

)(IF+2,JF)
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Similar formulae may be used for vertical lines embedded in the coarse grid. Then,
at fine grid points centered in coarse grid squares, VF+I,IF+, may be obtained by

k
D IF + I,JF +

k k(B + ,iv + v IF,IF + --Bv+2,iv + vIF +2,JF +

Having defined an interpolation operator, we now consider the coarse grid
difference operator Lk-. Our first effort at a definition of Lk-’ was the following: if
6 (a, b) 2ab/(a + b), then

(5.5a)

and

(5.5b)

B-’ 1/26(BF+ BF+2,IF)IC + ,IC ,IF,

+ 1/4(6 (BF+,,IF +,, BF+2,IF +, + 6 (BF+ ,,IF-,, BF+2,IF-, ))

Ak- 1/2a(A k k
IC,iC + IF,IF + 1, AIF,IF +2

+ (6 (AkF_ ,if + 1, Akv_ ,,IF +2) + 8 (AkF +,,IF + 1, Akm+ I,IF +2)),

etc.
One way of viewing these formulae is from the point of view of homogenization

theory. It is interesting that in special cases, like a two-layer problem, the coefficients in
(5.5) coincide with what one would get from homogenization theory [6]. For example,
in the definition of the B’s it is natural from the point of view of homogenization theory
for the harmonic average to appear in the x-direction and an arithmetic average to
appear in the y-direction.

The definition ofLk in (5.5) works well in most situations. One case where it does
not work well is in problems with four-corner junctures, that is, points at which a
horizontal piece and a vertical piece of F cross. In the special case of piecewise constant
D, four different values of D meet at such a point. (Given the example of the Four
Corners Region in the American Southwest, it is tempting to call a four-corner juncture
point a pollution point.) In 7, these cases are analyzed in more detail; in this section we
restrict ourselves to a single example to make plausible the replacement of (5.5) by

(5.6a)

and

B k-’c +, ,ic 1/28(Bv+ ,iv, Bv+2,iv)
+(,(AIF,IF + Bv+ ,iV + B k

m+2,iv + 1, Aw+2,IF +

k+ 6(AIFjF, BF+1,IF-, BF+2jF-, AF+ZdF))

(Am,IF+ AIF,IF +2AIC,IC + 1,

k(5.6b) + 1/4(8 (Bkv + 1,iv, Akv + 1,iv + 1, Aw+ 1,iv +2, Bkv+ 1jr +2)
+8(B’IF,IF, AklF 1,IF+I aklF t,IF+2 Bk

etc., where

8(a,b,c,d)=
1

( 1 )14 ++-+c
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These formulae are already plausible from electrical network arguments. For example,
there are three paths from (IF, JF + 1) to (IF + 2, JF + 1); one through (IF + 1, JF + 1);
one through (IF, JF + 2), (IF + 1, JF + 2), and (IF + 2, JF + 2); and one through
(IF, JF), (IF + 1, JF), and (IF + 2, JF). The diffusion coefficient for each path should be
computed by harmonic averages since each path has elements connected in series; the
diffusion coefficient of the three paths should be computed by an arithmetic average
since the paths are connected in parallel. Other paths can be added to the scheme, but
(5.6) seems good enough for the usual cases. At least in one important case (5.6) is
better than (5.5); this is the case of two layers with coefficients D1 and D2, D1 >>DE,
where their internal boundary F coincides with a fine grid line which is not a coarse grid
line. In such a case the difference equations obtained by (5.5) on the coarser grid would
break up the strongly coupled region, creating a disconnected line o strongly coupled
points (as also in Fig. 4 below) thus requring line (or more generally SCOD) relaxation.
Such troubles are avoided by (5.6) (as in Fig. 5 below).

Consider now the problem with a grid point at a single four-corner juncture, the
intersection of x X/2 with y Y/2. Assume that D is piecewise constant with values
DNW, DNE, DSW, and DSE in the northwest, northeast, southwest, and southeast
quadrants with respect to (X/2, Y/2). Assume specifically that DNW DSE 1 and
that DNE DSW e << i and assume a uniform mesh with mesh lines passing through
x X/2 and y Y/2. Let (X/2, Y/2)= (Xk, y/) for some k and I. Then in (2.4)

(5.7) Ak-1/E,l--Ak+l/E,l’-’Bk,l-1/2 --Bk,l+l/2 "-.

The first issue, then, is one of discretization of the finest grid itself since the dis-
cretization (5.7) is clearly incorrect for the juncture point (x, y). It is incorrect since the
northwest and southeast region should be insulated from each otherthere should be
only O(e) diffusion through their single point of contact (Xk, y); however, with (5.7)
holding, there quite clearly is strong diffusion from the northwest to the southeast
region. (This is discussed further in 7.) A better discretization would be to change (5.7)
to

(5.8) Ak-1/2,1=Ak+l/2,1--Bk,l-1/2 "-Bk,l+l/2 --E.

In the discussion that follows we will assume (5.8). It is possible to deal with (5.7) with
considerably more effort, but since it is a worse discretization, the effort is not Worth the
payoff.

There are two cases to consider for this example. The first is that the next coarser
grid also has grid lines along the interfaces x X/2 and y Y/2. In this case with either
(5.5) or (5.6), on the next coarser grid the northwest region stays insulated from the
southeast region, and the connections between the northeast and southwest regions
remain weak. The second case, in which the next coarser grid does not have grid lines
along the interfaces x X/2 and y- Y/2, is depicted in Fig. 3. The coarse grid is
indicated with crosses, and points that are strongly coupled on the fine grid have heavy
lines connecting them. When (5.5) is used to generate the coarse grid coefficients, the
situation is as depicted in Fig. 4. Note that the region which should have only weak
connections is broken up by two staircases of strongly connected points. This situation is
bad for two reasons. First, the coarse grid does not provide a good approximation to the
fine grid, and econd, one-dimensional "tails" of strongly coupled points, for which
SCOD block relaxation is necessary (as warned in 4), have arisen where they have no
right to be. Figure 5 depicts what happens when (5.6) is used to generate the coarse grid
coefficients; in this case the coarse grid is a good approximation to the fine grid, and the
"tails" do not appear.
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FIG. 3. Pattern of connections when (5.8) is used.

x Xx

FIG. 4. Pattern of connections on next coarser grid when (5.5) is used.
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X

FIG. 5. Pattern o[ connections on next coarser grid when (5.6) is used.

Another scheme, which retains most of the good features of (5.6) but which is
cheaper computationally (and is therefore the scheme currently implemented in
TTDAMG), is the following. (See Figs. 1 and 2.)
Define

F)IF,JF+ -- )IF+1,’F+ + ’ F)IF,JF -- ’)IF+

(5.9)
k-, 1/2([(3 kBIc+ldC+l (’-’T)IFJF+I 4- 3(y-,kT),F+ldF+ 1)]-1

k+ [(3(Y-,’)IFF+2 + 3(Y--,’)IF + ldF+2)]-’)

AIc+ldc+lk is defined similarly. These formulae are for uniform spacing; for nonuniform
spacing, they are modified by using area weighting. For the example shown in Figs. 4
and 5, this scheme gives the pattern in Fig. 5. Since the fine grid coefficients are defined
by (2.5), one must still modify the fine grid coefficients by (5.8) for that problem.

The final scheme we consider for definingLk-1 is the automatic one (5.2) but where
I-1 is taken to be J-x and I-1 is taken to be (J-I)*, i.e.,

(5.10) Lk-’ --(Jkk_l)*Lkjkk_,.

Lk -1The motivation for (5.10) is quite natural, since given the interpolation Jkk_l, is
precisely the Gk-1 operator that results from solving the minimization of a discrete
approximation to a Dirichlet integral for the correction problem on Gk-1. (This is
discussed in [2, A.5], but in that context the interpolation is the natural one for the
finite element method.) We discuss the relative merits of (5.6), (5.9), and (5.10) in 6
and 9; however, two obvious disadvantages of (5.10) are as follows. The first is thatLk-1

as defined by (5.10) is a nine point operator, while the other schemes discussed retain
five point operators on the coarser grids. The second is that the implementation of
(5.10) is nontrivial and in addition is very inefficient unless one can afford to store Jkk_.

If one is not using (5.10), then a related question concerns the automatic prescrip-
tion of J- as (J_)*. There is a plausible argument for this choice. Note that the
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interpolation operator has exactly the features that are desirable. For example, consider
k--1(5.4) and suppose that BkIF+IjF >>BklF+E.IF; then uxcac is weighted much more strongly

in the interpolation than k-1
UXC+laC. This same behavior should be true forJ-I that is, if

we have a source (i.e., residualmthe source for the correction problem) more strongly
connected to one coarse grid point than to another, then the flow from the source to that
coarse grid point will be proportionately stronger; hence, it will act as a (propor-
tionately) stronger source at that point than at the other. (Jkk_)* has exactly this
property. If oneis able tostoreJ-l, then thereis noreason not totakeJ -1 (J-l)*.
However, in TTDAMG we cannot afford to store J-l. Since (Jkk_l)* involves divides
(as does, of course, J-i and since on the CDC 7600, a divide takes as much time as
four multiplies, the question arises of taking j-l= (I-1)*. We have tried both
choices, and there is not a significant difference. For some problems J-I (J-i )* is
even slightly worse than j-i (I-1 )* assuming equal work for both; when the work
to do each is considered, Jkk-1 (I-1 )* wins easily. Of course, when (5 10) is used, and
Jkk_l is stored, then Jkk-I (J-i )* is the natural choice.

Given the lack of evidence for the indictment of bilinear interpolation in the first
scenario described in this section, one naturally asks at this point if one can dispense
withJ and use bilinear interpolation in conjunction with the Lk’s, k <M generated
by (5.6). Certainly if D jumps by orders of magnitude, then bilinear interpolation fails
to be second order, as recommended in [2], but this failure is only at interfaces; hence,
perhaps bilinear interpolation is good enough. It is not. Numerical experiments show it
to be good enough when there are a small number of interfaces and when D does not
jump by orders of magnitude. When either of these conditions is violated, bilinear
interpolation can lead to divergence in the fixed mode of multi-grid or to very slow
convergence in the accommodative mode. (By fixed mode, we mean that a predeter-
mined number of relaxation sweeps is taken on each grid in each cycle, a cycle consisting
of proceeding from the finest grid to the coarsest grid and back to the finest grid. The
accommodative mode is described in [2].) In both modes the 2 norm of the residuals
exhibits orders of magnitude jumps after interpolation, but the accommodative
algorithm accommodates by relaxing until the high frequency errors from interpolation
have been smoothed out.

Up to this point, we have tacitly assumed that the interfaces in D were more
important than the interfaces in trh 2. This assumption is good if the criterion for good
truncation error x/tr/Dh < 1 of [ 12, p. 72] is satisfied. However, even if this criterion is
satisfied on the finest grid, it need not be satisfied on the coarser grids, where O"k (h k )2
can easily dominate the Ak ,S Bk ,S.i.j and i.j In such cases it is not surprising that a fixed
weighting of the Ck’s Ck-1. to obtain fails to work well. If one were using (5.10), then it
wouldseemnaturaltodefineCk-1 (J 1)*ckj -1 however, withJ based just on
the diffusion coefficients Ak and Ik, even this choice does not always lead to good
convergence. It seems fairly clear that on coarser grids, it is important to incorporate cr
into the interpolation J-l- For example, consider the case that crh 2 dominates D
locally on even the finest grid. Then (5.4) can be inaccurate if there are interfaces in D
and tr, for k

U*CC and its weight can be large, while if o’w/lrh 2 is large, then k
)IF+1JF 0

is clearly better than (5.4) in this case.
The problem is how to incorporate cr into the interpolation. This problem is easily

solved in one space dimension, where one has a tridiagonal operator and can use the
operator to do interpolation. In two space dimensions the problem is trickier. For
example, since Ck-l= (J-i)*ckj-I is a nine point operator, it is not clear how to
separate out its x- and y-dependence. (The astute reader may have already noticed that
this is already potentially a problem with (5.4), which ignores the cross-coupling
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coefficients.) One solution is to integrate in y if the x-dependence is desired and to
integrate in x if the y-dependence is desired; this gives rise to the following scheme
(given for a uniform mesh). Suppose Lk has the pointwise template

kForm Q" IFk + I,,IF Tkw+ I.IF + + OklF+ I,JF +RksF+ IjF, F+I,JF --WklF+ I,JF +SlF+ I,JF

WklF+I,JF+I, and -kQIF+2dF TF+2dF +Qkv+2F +Rk
IF+2,JF+ 1- Then the formula cor-

responding to (5.4) is

k
I)IF + I,JF

OklF uk-1 k k-1
1,JF IC,JC + O., IF+Z,jFUIC+ 1,JC

~kSIF+ I,JF

Similar formulae may be used for vertical lines embedded in the coarse grid. Then, at
fine grid points centered in coarse grid squares, I)IF+I,JF+lk may be obtained by

k
DIF+ I,JF +

QklF +I,JF + U
k k k k
IFdF + + QkIF +2,JF ++2,JF + 1/3 IF + VIF+1,JF + 1/9 IF + 1,JF

k k k k k+ WIF+I,JF+EI)IF+I,JF+2 +RklF+I,JF+I)IF,JF +RIF+2,JF+2DIF+2,JF+2
k k k+ TklF+I,JF+2DIF,JF+2 + TIF+2,JF+IDIF+E,JF

SF+ I,JF + I.

We will refer to this new interpolation operator as J-i and for reference display the
following definition of L-1 using

(5.11) L-’ (_, 1

The numerical examples in 9 all have r ---0; however, in subsequent work [8], these
examples were repeated with nonzero

We have not yet mentioned the full multi-grid algorithm for (2.4). For smooth
equations like Poisson’s equation it is possible, using the full multi-grid algorithm [5], to
solve to within truncation error in work O(n), where n is the number of grid points
(without the full multi-grid algorithm, the work is O(n log n)); more precisely the O(n)
is five to seven work units. In this process one begins on the coarsest grid and bootstraps
his way up with each grid providing a good initial guess for the next finer grid; it can be
shown [5] that in this process cubic interpolation should be used when a grid is visited
for the first time. For (2.4), cubic interpolation is not appropriate, but the following
interpolation, described for the one-dimensional case, can take its place. In Fig. 6, we

u_% o-z u_<, o

-3 -a -I 0

FIG. 6. Generalization of cubic interpolation.

know UC__2, U U and Uc, 2, and we want to interpolate a value U0. We know the
coarse grid diffusion coefficients D-1 and DE and the fine grid coefficients D-1/2 and
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D1/2. We can form approximations to DUx at -2, -1/2, 1/2, and 2, namely

D-2 c2C-2--T (u-1 -u-

C1/2 D1/2(uc1 Ulo ),

and ask that a parabola go through C-2, C-1/2, C1/2, and C2o There are four degrees of
freedommthe three coefficients of the parabola and u0 and four constraints, and the
problem can be solved; indeed, the result is

1 ((5.12) Uo =D-l+D1/2
U + D-l uC-1 + D1/2+ UCl -V uc2

This process can be viewed as a generalization of (5.4); there one can fit a constant
through the approximation to DUx at two points by adjusting the desired interpolated
value vIFk +I,JF. (Also, it is easy to see that for constant D, (5.11) reduces to cubic
interpolation.) Experimental results subsequent to the first version of this paper seem to
indicate that (5.12) pays off only when there are no juncture points and then only if one
desires better accuracy in the derivatives of the solution. These results also indicate that
the full multi-grid algorithm with_1 replacing (5.12) does solve to truncation error in
one full multi-grid cycle; this is exploited in [8].

6. Some details of implementation. In this section we discuss some details of
implementation, many of which are specific to our application. The first is the issue of
storage. On each grid the storage of u k, Ak, B k, Ck, and Fk requires five locations per
grid point. Since we do line relaxation by lines in x, by lines in y, or both, there is a
collection of tridiagonal systems to solve on every relaxation sweep. It is clearly
inefficient to factor these each relaxation sweep. It pays to factor each as LU, L lower
triangular bidiagonal, U upper unit triangular bidiagonal. To save on divides one can
compute and store L-1. Thereafter, relaxation by lines in x [y is no more expensive
than point Gauss-Seidel; this observation, of course, is not new 11, p. 199], [ 12, p. 22].

The additional storage is one location per grid point [ 12, p. 22]; however, one may
use the Ck array for this purpose since it is no longer needed. The reason for this is that
the diagonal ofLU contains the information from Ck and in the only other place where
Ck might be needed, the calculation of residuals, Ck can also be dispensed with. To see
the latter, write line relaxation by lines in x, for new values i in terms of old values u, as
follows:

_Fk k k k -k
,.i -t-Ai,] + /2tt ,.i + +A ,] /Ett ,.i -1

The (i, j)th residual error in ti after all lines have been swept, is

rid =F A (u (a - (a+ -ai,j -[- i,j+l/2 i,.i+l--ai,.i)+Akid-1/2 i,]-l--Ui,j)+B+l/2d 1,j i,j)
__k k Ak -k k(6.1) +B-l/2,j(ai-l,j i,j)-Ci,jai,j + i,j+l/2(Ui,j+l --Ui,j+l)

_O+A (k k
d i,] +1 U i,.i + ).

Thus one can dispense with storage for Ck, and the total storage needed is 5 locations
per grid point (6 if alternating line relaxation is used) plus a little extra for the direct
solution on the coarsest grid. The above calculation also shows that the computation of
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the 12 error and of the residuals for I-1 is extremely cheap and can be performed
during the relaxation sweep. Note that an expression analogous to (6.1) can be written
down for point relaxation, enabling one to compute the residuals during the relaxation
sweep for an extra two multiplies per grid point as opposed to the one multiply that (6.1)
requires.

Another issue is the possible storage of the interpolation operators Jkk_l. Actually
this storage requirement is not badm6 locations per Gk-1 grid point or 11/2 per Gk grid
point. It is thus an indication of how strapped for storage we are in TTDAMGwhen we
cannot afford to store J_. When the constraint on storage mentioned in 1 is
removed, however, the storage of J-I will become possible.

It is sometimes the case that the problem being solved is so large that the whole
finest grid and its associated unknowns will not fit in memory at the same time. In such a
case only a number of lines, say x-lines, of the mesh may reside in memory at once.
Buffering the mesh in and out of memory once for each relaxation sweep, once for each
interpolation, and once for transfer of residuals is extremely inefficient. For this
situation we propose that one should instead perform these operations in a wave, as
follows. For a given set of x-lines one can perform interpolation from the next coarser
grid. These x-lines are now ready for a relaxation sweep, and once a relaxation sweep
has been performed on a given x-line, the next relaxation sweep may be performed on
the x-line below it. Once the relaxation sweeps have been performed, the residual
transfer to the next coarser grid may be performed for the next lower x- line. The whole
wave of operations requires the finest grid to be buffered in only once. (Similar
considerations apply if even some of the coarser grids are too large to fit in memory.
Using this wave of operations idea and the full multi-grid algorithm, one can obtain a
solution to the level of truncation error in a process that includes only one visit (i.e., one
wave of interpolation, two sweeps and residual transfer) to the finest grid. This can then
be programmed without even storing the finest grid, not even externally [2]. Further
reduction of required storage without using external storage is possible (segmental
refinement).

The above wave of operations process is efficient for Gauss-Seidel by lines in x, but
what about Gauss-Seidel by lines in y ? One solution is to relax by shorter lines in y,
overlapping the lines. Another suggestion is to use weighted line Jacobi relaxation by
lines in y. In this case one has a collection of tridiagonal systems Aixi =] to solve.
Assume for the moment that Ai has been decomposed intoLU and that L-1 has been
computed. Because L- is lower triangular, L-lf can be performed several x- lines at a
time, for every i, starting at the bottom of the mesh. Then Uix L/-1] can be solved
several x- lines at a time for every starting at the top of the mesh. Once the sweep back
down is started, transfer of residuals can be performed. For alternating line relaxation,
one can perform the wave of operations consisting of interpolation, relaxation by lines
in x, computation of L/-lf for all on the way up, then solution of Ux L/-1] for all
and transfer of residuals on the way down. The whole wave requires two bufferings of
the finest grid into memory. Note, however, that only one line Jacobi relaxation by lines
in y can be performed in these two bufferings. Note also the attractiveness of weighted
line Jacobi relaxation for vector machines.

A final issue of implementation is whether Lk, k <M is defined by (5.6), (5.9), or
(5.11). If it is assumed that J_l is stored, 17 multiplies per fine grid point (22 if the fine
grid operator is also a nine point operator) are required for (5.11). This sounds
expensive, but actually (5.6) requires 15 multiplies per fine grid point because of the
necessary divides (with a divide counted as four multiplies). Procedure (5.9) is the
cheapest, requiting only 7 multiplies per fine grid point. Since a point (or line)
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Gauss-Seidel sweep on the finest grid requires five multiplies, perhaps none of (5.6),
(5.9), or (5.11) should be viewed as very expensive. Procedure (5.11) does, however,
give nine point operators on the coarser grids, requiting twice as much work per
relaxation sweep on the coarser grids.

7. The tour-corlaer juncture. Consider the case where the internal boundaries F
contain two straight segments F1 (horizontal) and 12 (vertical) intersecting at a point,
which we will call a juncture. The neighborhood of the juncture is thus divided into four
quadrants Q1, Q2, Q3 and Q4 (see Fig. 7). Let the diffusion coefficient at Qi be Di. We

FIG. 7. Four-corner juncture problem.

are interested in analyzing the discretization and multi-grid procedures in the case
where

max (D2, D4)
(7.1) e

min (D1, D3)

is very small. This case is of special interest since it implies a worse-than-usual
singularity. Usually, when D is discontinuous, the solution exhibits discontinuous
derivatives. When e - 0, however, the solution at the juncture becomes discontinuous
itself. Indeed, when e - 0 the solutions at Q and at Q3 become completely independent
of each other: Each tends to a solution of an independent boundary-value problem,
with homogeneous Neumann boundary conditions along F1 and 1-’2.

It is well known that near a severe singularity special care should be taken in writing
the discrete equations. Similar care is needed in transferring the equations from the
finest grid to coarser ones. While a bad discretization (on a fixed grid), which results in a
bad approximation, is often unnoticed (since the true solution is not known), a bad
discretization on coarser grids in a multi-grid context (e.g., a bad fine-to-coarse transfer
of diffusion coefficients) often manifests itself in a slower multi-grid convergence. This is
an advantage of multi-grid processes: they clearly expose discretization troubles.

The discretization of the diffusion equations (2.4) around a juncture is a point in
case. Slower multi-grid rates led us to discover a certain conceptual defect in the
discretization method. The discretization method and the fine-to-coarse transfer of
diffusion coefficients should therefore be studied simultaneously.

Assume the grid is chosen so that ll and 1-’2 are grid lines; hence, the juncture is a
grid point. (This is presumably a desirable choice, as placing knots at discontinuities
usually yields better approximations.) Assume for simplicity that F1 is the x axis, that I2
is the y axis, hence that the juncture is at the origin, and that D1--D3- 1 and
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D2=D4 e. The differencing scheme of 2 would then give discrete diffusion
coefficients as described in Fig. 8. These same coefficients will also appear on coarser
grids, as long as 1-’1 and 172 are still grid lines, whether we produce the coarse-grid
coefficients directly from the differential ones by (2.5) or we transfer them from finer
grids by (5.5), (5.6), or (5.9).

r2

2

FIG. 8. Diffusion coefficients for four-corner juncture problem.

Numerical experiments with this discretization-coarsification method exhibit
slower multi-grid convergence rates. See or example Table 3 in 9. There is indeed an
obvious weakness in this discretization: In the limit e -0 the quadrants Q1 and 03
become physically completely insulated from each other, whereas in the discrete
scheme they remain coupled.

More precisely, in the limit the solution in the vicinity of the juncture tends to one
value C1 in the quadrant Q1 and to another value C3 in Q3. In particular

U(h, O) U(O, h)= U(h, h)= U(2h, 0) -C

while U(0, 0) is not well defined. In our numerical scheme, on the other hand, we will

get

u (o, o) C1 --C3

Uh (]h, 0) U" (0, 0) 1 + 0.66 log j
(7.3) Uh (kh, O)- Uh (0, 0) 1 + 0.66 log k’ J - 1.

and hence

uh (ih, 0)-Uh (ih- h, O) 2 + 1
(7.2) Uh (ih + h Uh (ih 2---1’ i >- 2
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(The approximate coefficient 0.66 is computed numerically.) The discontinuity at the
juncture is smeared by the scheme. There is thus an O(1) error in Uh at points O(h)
distant from the juncture. Similarly, in the multi-grid process, there is an O(1) error in
the approximation to Uh provided by u2h around the juncture. This results in t slower
multi-grid convergence rate.

An obvious and simple cure is to avoid the coupling between Q and Q3 by using as
our discrete diffusion coefficients around the juncture

(7.4) Dh h =Dh h h
1/2,0 Do,l/2 1/2,0 D0,-1/2 a

where
2h(7.5) c h<< 1, a << 1,"’.

The precise values are not important. For this purpose it is enough to set a h << 1 and use
the scheme (5.6) to produce the diffusion coefficients on coarser grids. Such a procedure
has actually been implemented, with satisfactory results. See Table 3 in 9.

Observe that using the transfer scheme (5.5) instead of (5.6) will not do here. Even
with a h << 1, it will produce c 2h comparable to 1. Unlike (5.6), it does not preserve
decoupling: blocks which are decoupled in the fine grid may become coupled in the
coarser ones.

8. Pathological difference equations. It may be important to notice that the
methods described above, fully efficient as they are for the cases (2.5) assumed here, are
not yet general enough to solve efficiently all difference equations of the form (2.4). All
kinds of "pathological" cases can easily be exhibited by diagrams such as Figs. 9a and
9b. Diagrams with much less regularity can of course be arbitrarily drawn.

In the case exhibited in Fig. 9a the coarse-grid equations, whether derived by (5.5)
or by (5.6), will have no strong coupling, and thus will represent a very poor approxi-
mation and will contribute no multi-grid acceleration. In the case of Fig. 9a the situation
could be corrected by using still more complicated formulae than (5.6), which take into
account more possible paths between coarse-grid points. In the case of Fig. 9b even this
would not help. A different approach is needed, the objective of which will be, roughly
speaking, to derive coarse-grid equations in which two regions are strongly coupled if
and only if they are strongly coupled on the fine grid. (Two regions are called strongly

(o)

,k

’(

(b)

X X

X X

X X

X

X

X

X

X

X

FIG. 9. Patterns of difference equations. Part of the fine grid points is shown by dots and crosses. The crosses
correspond also to coarse grid points. Links are shown between neighboring fine grid points which are strongly
coupled (i.e., connected with large D ).
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coupled if there is a point in one of them which is strongly coupled, through a chain of
strongly-coupled intermediate points, to a point in the other.) In case 9b, for instance,
all the couplings on the coarse grid need to be strong (about half as strong as on the fine
grid). Methods for deriving coarse-grid equations for arbitrary fine-grid equations
require further study.

Notice, however, that in discretizing diffusion problems by (2.5), we do not get
arbitrary difference equations. In fact, (2.5) implies relations like

Ai,j+l/2 Ai-l,j+l/2 q-Ai+l,]+l/2,

Aij + [2 I [2,] "[-B + [2,],

etc. These relations prevent pathologies of the above kind. But such relations are not
necessarily maintained on coarser grids. So troubles may arise in the communication
between coarser grids and still coarser ones. On those grids, however, we can afford
more sophisticated procedures, since the associated computational work on coarser
grids is much smaller.

9. Numerical examples. In this section we present several numerical examples
indicating the behavior of various schemes described in this paper. Most examples
employ a fixed algorithm, in which p indicates the number of relaxation sweeps on grid
Gk +1 after interpolation from grid Gk, k _-<M 2; q indicates the number of relaxation
sweeps on grid Gk-1 after interpolation of the residuals from grid Gk, k _-> 3, and r is the
number of relaxation sweeps on the finest grid. All examples use an initial guess of u --- 0and begin on the finest grid. Unless otherwise indicated, all examples use point
Gauss-Seidel and solve the coarsest grid problem directly.

Example I is for the problem depicted in Fig. 10. D is D --1/2 outside the shaded
region and various values DE given in Tables 1 and 2 inside it; f 1 and tr --- 0, and the

24.

0.
O. II. 13. 24.

FIG. 10. Example I.

boundary values are given by Ou/O, =-1/2D u on all sides. The number of grids is

M 4, the finest satisfying hi ki 1.0. The computations for this example were done
quite early in the development of our codes. At that time we were using line relaxation
by lines in x, even for uniform grids, and even on the coarsest grid. Table 1 shows the
result of using bilinear interpolation and the accommodative algorithm; methodA uses
a fixed weighting of the coefficients of Lk to obtain those of Lk- while method B uses
(5.5). Table 2 shows the result of using the fixed algorithm p =q r 1 and direct
solution on the coarsest grid; again (5.5) is used, but the interpolation is (5.4). Table 2
shows a comparison between the multi-grid convergence factor/xM and the line SOR
convergence factor/XSOR. The optimum to SOR was chosen by experimentation; it is

worth remarking that for large D2/D the optimum to SOR differed very little from the to

chosen by the usual power method techniques [ 11, pp. 203-290], yet the difference in
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TABLE

D2/D A B

10-4 0.580 0.516
10-3 0.580 0.516
10-2 0.588 0.516
10-1 0.586 0.516

0.562 0.520
101 0.710 0.644
102 0.877 0.726
103 0.931 0.768
104 0.954 0.794

TABLE 2

D2/D Ix SOR tO SOR /J’ MG

10-4 0.731 1.71 0.486
10-3 0.731 1.71 0.486
10-2 0.731 1.71 0.486
10-1 0.732 1.71 0.487

0.744 1.71 0.490
101 0.764 1.74 0.498
102 0.875 1.87 0.532
103 0.960 1.95 0.537
104 0.990 1.99 0.537

convergence rate was much better with the experimentally chosen tO SOR; that is, in
practice IX SOR would be even worse than the values given in Table 5.

This first example includes ratios of D2 toD that-do not occur in practical runs of
TTDAMG; there D2/D1 ranges from 10-2 to 102. However, the range of D2/D1 can
be, e.g., 10-4 to 104 in problems arising directly from diffusion theory, and the
remaining examples are chosen to explore various difficulties that can arise in such
problems. (We remark that in many practical problems, the pattern of D’s, f’s, and tr’s
is a very complicated mosaic. We have tried such problems with success, but because of
the difficulties in describing the mosaic, we do not present any here.) We also give
results for using four grids, the finest grid again satisfying hi kj 1.

Example II is a problem with a four-corner junction. The region is
(0., 24.)x (0., 24.). F is x 12. and y 12. The values of D[f] in the northwest,
northeast, southwest, and southeast quadrants with respect to (12., 12.) are 1000. [ 1.],
1.[0.], 1.[0.], and 1000.[ 1.], respectively. The boundary conditions are

(9.1) Ou I 0 onx=0, andy=0.,

Ov ---u onx=24, andy=24.,

and r is identically zero.
The number of grids for this problem is M 4, the finest satisfying hi kj 1.0;

thus, the coarse-grid problem has 16 unknowns, and the finest grid problem has 625
unknowns. Table 3 indicates the results of several methods for this problem. Method C
uses (5.6) to defineLk, k <M and (I_1)* as a residual weighting. MethodD is the same
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TABLE 3

p,q,r C D E F

1,1,1 * 0.56, 0.83 0.54, 0.75 0.59, 0.78
1,2,2 * 0.60, 0.75 0.59, 0.72 0.65, 0.77
1,2,3 * 0.66, 0.77 0.65, 0.74 0.69, 0.77
1,1,2 * 0.59, 0.71 0.53, 0.69 0.62, 0.75

as C but uses (5.8) to correct the bad discretization on the finest grid. Method E uses
Lk-l-- (.kk_l)*Lkj_l and (J-i)* as a residual weighting, and method F is method E
with (5.8) used to correct the bad discretization on the finest grid. Each of these methods
was run with various fixed algorithms; these are indicated by givingp, q, and r, wherep is
the number of relaxation sweeps from Gk to GTM, k <-M-2, q is the number of
relaxation sweeps after interpolation from Gk to Gk-, k ->2, and r is the number of
relaxation sweeps on the finest grid; the coarse-grid problem is solved directly.

For each run two numbers are given. The first indicates the convergence factor in
terms of the work of relaxation sweeps alone, and the second indicates the convergence
factor in terms of relaxation sweeps and interpolations, assuming the latter have been
done efficiently (that is, assumingJ-I is stored and that residuals are computed during
the last relaxation sweep before interpolation from Gk to Gk-1). Note that methods E
and F require twice the work of C and D for relaxation on the coarser grids since they
use nine point operators instead of five. An asterisk in the table indicates divergence.

Note that method C diverges due to the bad discretization on the finest grid and the
fact that (5.6) converts this bad discretization into bad communication between grids.
(See the discussion in 8.) The accommodative algorithm would converge for method C
but with a bad convergence factor. For methods D, E, and F, the algorithmp 1, q 1,
r 2 is the best. It is curious that method F is slightly worse than method E.

Example III is for the problem depicted in Fig. 11. D[f] is 1.[0.] outside the shaded
regions and 1000.[ 1.] inside it; tr 0, and again the boundary values are as in (9.1). This
problem uses three grids, the finest satisfying hi kj 1. Thus the shaded region falls
between the grid lines of G2, and with method C the set of the strongly coupled points

16.

FIG. 11. Example III.
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on G2 is an inverted L. The results are summarized in Table 4. Method C diverges;
however, method C with the accommodative algorithm should converge, though
slowly. Method G uses line relaxation by lines in x and also diverges. Method H uses
alternating line relaxation; the first [second] pair of numbers for H counts each sweep of
alternating line relaxation as one [two] work unit[s]. Method I uses SCOD relaxation,
relaxing the inverted L of points on G2. as a block. In method E one-dimensional tails
appear on G2 also, butmunlike method C--there is a set of strong coupled points on
grid G 1; in fact this set is two-dimensional and apparently acts as a good correction to
grid G 1. We also give results for using four grids, the finest satisfying hi kj 1.

TABLE 4

p,q,r C E G H

1,1,2 * 0.55, 0.71 * 0.55, 0.68 0.56, 0.69
0.7, 0.8

1,1,2 (4 grids) 0.61, 0.75

Example IV is for the problem depicted in Fig. 12. D[f] is 1.[0.] outside the shaded
region and 1000.[1.] inside it, th--0, and again the boundary values are as in (9.1).
Again the problem uses three grids, the finest satisfying hi kj 1. Thus again the
shaded region falls between the grid lines of G2, and with method C the set of strongly
coupled points of G2 is a one-dimensional staircase. The results are summarized in
Table 5. All the methods based on (5.6) diverge, even the accommodative algorithm.
(With the accommodative algorithm and 3 grids, the residual norm on G2 is worse after
interpolation from the solution from G than before. Hence, the method cycles
between G and G2 with the residual norm on grid G2 getting bigger and bigger.)
Method C works fine if the coarsest grid is eliminated, that is, if only two grids are used.
Hence, the problem is clearly that when 3 grids are used, G provides a terrible
correction to G2. With method E, the set of strongly coupled points of Gz is

16.

O. I\\\I
O. I. 3. 5. 7. 9. I. 13. 15.16.

FIG. 12. Example IV.
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TABLE 5

p,q,r C E G H

1,1,2 * 0.59, 0.74 * * *

accommodative * * * *

1,1,2 (4 grids) 0.63, 0.76

two-dimensional, i.e., the steps of the staircase are connected by strong cross-coupling
coefficients. Again, we give results for four grids for this problem, the finest grid
remaining unchanged.

These examples indicate dearly that (5.11) is more robust than (5.6) or (5.9). For
problems arising in TTDAMG, (5.6) or (5.9) is suitable; however, even for these
problems if one can afford to store a_l we feel that (5.11) is to be preferred since it is
more efficient than (5.6) or (5.9) for all but the simplest problems (like Laplace’s
equation), and even for these problems (5.11) is not much less efficient than (5.6) or
(5.9).

Finally, we remark that examples II-IV have been repeated in [8] using method E
and giving timings for a CDC 7600; in [8], however, one full multi-grid cycle with
is used to start the calculation. Also, examples II-IV are repeated with nonzero r and
with piecewise bilinear finite elements being used as the discretization on the finest grid.
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A TWO-DIMENSIONAL MESH VERIFICATION ALGORITHM*

R. B. SIMPSONt

Abstract. A finite element mesh is usually represented in a program by lists of data, i.e., vertex
coordinates, element incidences, boundary data. This paper is concerned with conditions on the list data
which ensure that the lists describe a "tiling" of some planar region without overlap or gaps. For a particular
format of lists, a set of such conditions is given which is proven to be sufficient to guarantee such a "tiling".
These conditions have been chosen so as to be verifiable by the algorithm referred to in the title, which is
described in detail and is claimed to be of reasonable efficiency.

Key words, mesh, finite element, triangulation

1. Introduction. A mesh on a region of the plane generally appears to the reader
of a textbook or research paper as a diagram showing a partition of the region into finite
elements of simple geometric shapes, usually triangles or quadrilaterals. Intuitively, the
partition can be thought of as a tiling of the region up to its boundaries by the finite
elements as tiles. On the other hand, it appears to the user of the method in the source
code of his programs as lists of numbers of specific types, e.g., positive integers less than
M, real numbers, etc. In general, however, if the lists are filled with arbitrary data of the
correct type, they only represent some collection of elements, which may overlap each
other, or leave gaps in the region’s interior. Whether the collection represents a proper
tiling or not is data dependent. The purpose of this paper is to make an explicit
statement of this dependence in the form of a set of four conditions that the data must
satisfy, these conditions being specific to two-dimensional meshes. Although the
conditions are geometrically simple, their verification for the lists of a particular mesh
involve nontrivial computations which have been organized in this paper into an
algorithm which is referred to as the mesh verification algorithm. One consideration in
the choice of these conditions, then, has been that the mesh verification algorithm be
sufficiently efficient to be practically viable.

Implemented in a program, the algorithm can be used to check a mesh produced
for a particular computation. It is a common practice in employing the finite element
method to prepare a mesh using a mesh generation program, possibly store it in a file,
and plot it to examine its correctness and suitability to the region and the problem
before proceeding to the subsequent stages of the method. Often this procedure is
repeated a number of times because the mesh is shown to be incorrect, typically due to
errors in input data to the mesh generation program, or weaknesses in its algorithm or
"bugs" in its programming. An algorithmic verification of the output lists based on the
criteria in this paper is viewed as being a check on the mesh which is complementary to a
graphical examination in the sense of being faster and not dependent on graphic
facilities, but not providing the positive evidence of the suitability of the mesh that a
visual inspection gives.

A second motivation for these conditions is to give a mathematically rigorous
definition of a finite element mesh that can serve in the study and development of mesh

* Received by the editors August 27, 1980, and in revised form April 27, 1981. This research was carried
out at the Brunel Institute of Computational Mathematics, Uxbridge, U.K., while the author was on
sabbatical leave from the University of Waterloo, and was supported by a grant from the Natural Science and
Engineering Research Council of Canada.

" Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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generation programs, allowing explicit specifications for algorithms and providing a
debugging tool. A number of methods for mesh generation have been discussed in the
published literature, e.g., [3], [6], [11], [15], which have been implemented in programs
giving extensive satisfactory use. There is no doubt that mesh generation programs can
be written which are pragmatically successful without a mathematical definition of a
finite element mesh. However, to say whether such a program is correct or not, or to
state under what conditions it fails, or to compare two such programs is difficult because
of the vagueness about the specifications for output as well as input even at the
algorithmic level. The programs produce meshes in their list form, but as we have
mentioned above, not all lists correspond to legitimate meshes. In particular, it is
believed that the four conditions of the definition can be used as verification conditions
for proving mesh handling programs correct (see Van Emden [18], for a pragmatic
discussion of the use of verification conditions in programming). While the question of
whether, or in what measure, program correctness procedures will aid program
synthesis is an area of speculation, there seems little doubt that a better understanding
of the mathematics of an algorithm and its data generally leads to programs which are
better in a variety of senses.

In 2, the list representation that we will use for a collection of elements is
introduced, and with it, four conditions on the collection are stated geometrically which
form the proposed definition of a planar mesh. These condition are then justified in 3,
on a mathematical level by proving that a set of lists which meet the conditions describe
a tiling of some region of the plane. The definition is restricted to apply to meshes for
regular planar regions (possibly multi-connected, or disconnected); in particular, it does
not extend to meshes for describing regions with cracks as used in some finite element
applications. Readers who are not interested in the formal justification of these
conditions may proceed to the development of the mesh verification algorithm in 4
and 5. In these sections, the conditions stated for the collection of elements repre-
sented by mesh lists are expressed as computational checks on the list data.

In these computations, information about the element sharing a common edge with
a given element (i.e., an element’s neighbor) is required. This information is used in a
variety of other contexts in the finite element method, e.g., averaging stresses over
neighboring elements [17, p. 168], improving the triangulation of a region [11], or
performing local mesh refinements [13], [15]. The process of obtaining and verifying
this information involves a list inversion of one of the mesh lists, and is of some
independent interest, so it is discussed separately in 4. The other aspects of checking
the conditions are dealt with in 5. At this stage, the generality of the elements’
geometry becomes a significant factor, so the discussion is specialized to triangular
meshes to avoid unwarranted complexity.

In composing the algorithms of 4 and 5, a compromise between simplicity and
optimality has been sought. Some comments on the performance of a Fortran imple-
mentation are given in 6. An inspection of the components of the verification
algorithm indicates that it should run in times linear in the number of triangles in the
collection being verified, subject to some restrictions on the mesh topology that are
quite natural for finite element meshes.

While the author is unaware of other algorithms for verifying a mesh in this sense,
several algorithms for verifying other geometric "objects" have appeared. There is a
substantial literature on algorithms for verifying graph planarity (e.g., Hopcroft and
Tarjan [9]). Recently, a linear time algorithm for verifying the planarity of a 2-complex
has been published by Gross and Rosen [8], and in [14], Shamos and Hoey give an
algorithm for verifying when a planar polygon is simple. In these references, the
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algorithms tend to be described at a high level, with the primary emphasis placed on the
analysis of the complexity of the process.

2. List definitions and the conditions for a mesh. The list representation for a
finite element mesh which we will assume here consists of two basic lists"

the vertex coordinate list of length No,
the element incidence list of length Ne

and an auxiliary list"
the boundary reference table of length Nb.

The basic lists contain independent data, but the boundary reference table’s informa-
tion about the mesh can be obtained from the other two. The kth entry of the vertex
coordinate list is the coordinates (xk, yk) of the kth vertex of the mesh, also denoted
P(k) in the sequel. The term "vertex" here refers to the points which determine the
geometric shape of the element as a region (e.g., the 3 vertices of a triangle), as opposed
to the term "node" which is commonly used for points associated with degrees of
freedom of the element shape function. The entries in the vertex coordinate list are
required to be unique, i.e., if j k, then P(])# P(k). The ]th entry in the element
incidence list is itself a sublist of the indices in the vertex coordinate list of the vertices of
the jth element. E(j) will be used to denote the ]th element and if it has I(j) >- 3 vertices,
then the jth entry of the element incidence list consists of integers v(1, j), v(2, j),. ,
v(I(j),j) with O<v(i,])<-Nv, and v(i,j)#v(k,]) if ik. The ith vertex of E() is
P(v(i, j)) and will be referred to as the local vertex number of P(v(i, ])). The ith edge of
E(/’) is the directed line segment running from P(v(i, )) to P(v(i + 1, ])), where

(2.1) mod I(j)

is a notation used in the sequel for indexing the "next" vertex around E(]), and will be
referred to as the local side number of this side.

The kth entry of the boundary reference table consists of a pair of integers (b(1, k),
b(2, k)) which described the kth boundary edge of the mesh by giving the index of the
element to which it belongs, 0< b(1, k)<=Ne, and the local side number, 0< b(2, k)<=
I(b(1, k)). This list is ordered first by b(1, k) and within entries having the same value
for b(1, k) by b(2, k) i.e.,

kl < k2=)’ b(1, kl) -< b(1, k2)

(2.2) and if b(1, kx) b(1, k2) then b(2, kx) < b(2, k2)

This list is the least standard of the three in the literature on finite element program-
ming. It was proposed by J. A. George in his thesis [7], and doubtless has been used
independently by other implementors of the finite element method. As mentioned
above, the mesh information contained in it is redundant, as it is contained implicitly in
the element incidence list information. The algorithms that we discuss below could
either build the boundary reference table from the element incidence list, or check that
it is consistent. In view of the use of meshes in the finite element method, we have
chosen to describe the latter. Typically, the table contains additional problem specific
data concerning boundary conditions and is generated with this data at the time the
mesh is generated (i.e., the other two lists are constructed.) The ordering of the table is
done to facilitate synchronizing a scan of the element incidence list with a scan through
the table. An example of this occurs in (4.7) of 4; however, the primary instance of
this, for the finite element method, occurs in the scan of the elements to generate local
stiffness matrices. In some implementations, these boundary data are added as extra
fields in the entries of the element incidence sublists either directly or through pointers.
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A discussion of some alternative representations for meshes, and issues associated
with them, may be found in [16]. While the definition given here clearly does not
conform directly to a variety of implemented data structures for mesh representation, it
is expected that a fairly simple identification or translation can be made between the
representation used here, and the data structures of most implementations.

We now specify the four conditions on the collection ot elements described by the
mesh lists that qualify this collection to be a mesh.

C1. The directed polygonal curve formed by traversing the element sides in local
side number order forms a simple closed curve with bounded interior (i.e., bounded
region on the left of the curve). The finite element E(]) is defined to be the closure of the
interior ot this curve.

C2. The ith edge of E(]) is either the only edge joining its endpoints or there is one
other element, E(l), having an edge joining these vertices. In the latter case, the line
segment joining these vertices must have the opposite direction as an edge of E(j) to its
direction as an edge of E(l). In the first case of C2, the ith edge of E(j) is a boundary
edge and E(]) is its boundary element. To be consistent, the boundary reference table
must have an entry with b(1, k) =/’, b(2, k) i. In the second case of C2, the ith edge of
E(]) is an interior edge with E(/’) and E(l) as neighbors across this edge. The
requirement concerning the directions of the line segment as an edge ot E(l) and E,(j)
will be referred to as edge consistency and if it holds then the vertex of index v (i + 1,/’)
will be the ruth vertex of E(1) for some value of m which is referred to as the
complementary local edge number in 4.

C3. No interval of a boundary edge intersects an element other than its boundary
element.

C4. A vertex can have at most one boundary edge directed away from it. Vertices
with one such edge will be referred to as boundary vertices in this paper.

In 3, we want to establish that these requirements are sufficient to ensure that the
lists describe sets of elements which "tile" a region of the plane. However, first we will
discuss some examples in which C2-C4 are violated to illustrate the sense in which they
are necessary. The requirement in C1 that edges have the direction that puts the
element on the left coupled with the edge consistency restriction of C2 ensures that
neighbors lie on opposite sides of their common edge, i.e., that’ a short line segment
which intersects an interior edge passes from the interior of one neighbor into that of the
other. Without these requirements, for example, the configuration of Fig. 2.1 would
qualify as a mesh with the list of vertices P(1) (1, 1); P(2) (1, 1); P(3) (- 1, 1);
P(4) (-1, 1); element incidences v(i, ) given by Table 2.1 and an empty boundary
reference table.

The necessity of C3 can be seen from the obvious overlap in Fig. 2.2, referred to as
mesh "overspill" in [6].

4

FIG. 2.1
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TABLE 2.1
v(i, ) for Fig. 2.1

1 2

1 3 2
2 4 2
3 3 1
4 3 2

3

FIG. 2.2

In Fig. 2.3, an example in which the region covered by the elements of the mesh has
both overlap.and a "gap" is shown. The elements are the eight outer squares plus the
four triangles, and the boundary reference table records the outer edges of the squares
and the oblique sides of the triangles as boundary edges. The triangles share their
horizontal or vertical edges with a square, but are not strictly neighbors because the
edge consistency along their common edge cannot hold, or counter clockwise listing of
vertices fails, i.e., C1 and C2 cannot both hold.

FIG. 2.3
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The central square of the figure is not an element of the mesh, but is a region of the
plane not separated from the elements of the mesh by a boundary edge. It is a form of
"gap" in the mesh. Condition C3 and one of C1 or C2 are violated in this case.

The role of C4 seems less clear; certainly it precludes undesirable anomalies such
as a mesh with every edge a boundary edge, like the black squares of a checkerboard.
However, it appears that its primary implication is that the boundary curves form simple
closed curves as in Theorem 1, and no example has been constructed in which C2 and
C3 are satisfied, C4 is violated, and an overlap of element interiors occurs.

3. Proof of sufficiency. We turn now to establishing that the requirements C1-C4
are sufficient to ensure that the lists of (2.1) correspond in some rigorous way to the
intuitive idea of the elements tiling a region of the plane. First it is shown that the set of
boundary edges of the mesh form a set of disjoint simple closed curves in Theorem 1.
We then show that these curves are oriented in a consistent manner, so that their
interiors define bounded regions of the plane for which they are the boundaries in
Lemma 3. It is then shown in Theorem 2 that this region is covered without gaps by the
elements of the mesh and in Theorem 3 that it is covered without overlap. To avoid
repetition of "polygonal" in this section, we shall assume henceforth that all arcs or
curves are polygonal. For a helpful, if elementary, reference on curves and regions in
the plane, see [1].

The following lemma concerning a type of connectivity of the mesh will be quite
useful in the sequel.

LEMMA 1. Let P be a point lying in the interior ofm elements of the mesh for m >- 0
and let P be joined to a point Q by an arc which passes through no mesh vertex and
intersects no boundary edge. IfQ does not lie on an element edge, then Q lies in the interior

of m elements of the mesh.
Proof. As a point moves along the arc from P towards Q, it can only leave an

element through an interior edge, at which point it enters its neighbor (C2). [3
LEMMA 2. A vertex is a boundary vertex ifand only if it has a boundary edge directed

towards it. The incoming boundary edge of a boundary vertex is unique.
Proof. Let P be a vertex and let 8’ be the set of edges having P as an endpoint.

Assign e 8’ a value 1 if it is directed towards P; 1 if it is directed away from P. Since
each element for which P is a vertex contributes two edges to ’, one incoming and one
outgoing, it is clear that the sum of the values of edges in g’ is zero. By requirement C2,
the contribution to this sum from all interior edges in ’ is zero, and by C4 the
contribution from all outgoing boundary edges is 0 or 1. Hence the contribution from all
incoming boundary edges at P must be 0 or -1, from which the lemma follows.

THEOREM 1. The boundary edges of the mesh form a set of simple closed oriented
curves, C1, C2,"’, Ct, which do not intersect each other.

Proof. Let P be a boundary vertex and consider the curve traced out by following
the unique outgoing boundary edge from each vertex to the boundary vertex to which it
is directed (Lemma 2) starting from P. Since this process can be continued indefinitely,
and there are only a finite number of boundary vertices, one must be traversed twice by
this curve. If the first one to occur twice is not P, then there are two distinct boundary
edges leading to it, in violation of Lemma 2. Hence the curve formed by carrying out this
process until P is encountered a second time is a closed oriented curve which can be
labelled C1. To see that this curve is simple, we note that from C3 it cannot intersect
itself on the line segments between vertices, and as no vertex other than P is visited
twice in a circuit starting at P, it cannot intersect itself at a vertex. If not all the boundary
vertices lie on C1, then the argument can be applied to another boundary vertex to
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establish a simple closed oriented curve C2, and so on. Two of these curves cannot
intersect at the interior of a line segment by C3 nor at a vertex by Lemma 2, hence they
must be disjoint. !-I

The region on the left of a simple closed oriented curve, C, is conventionally
referred to as its interior while the region on the right is referred to as its exterior. Such a
curve divides the plane into a bounded region and an unbounded one, and whether the
bounded region is the curve’s interior or not depends on the curve’s orientation, of
course. Although we can expect from C1 and C4 that the elements of the mesh should
lie in the interiors of these curves in some sense, Theorem 1 does not give any
information about the relative orientations of these boundary curves. For example, it is
conceivable that both C1 and C2 have bounded interiors and that (72 lies in the interior
of C1. If no curve lies between C1 and C2, then there is no region for which C1 and C2 are
oriented boundary curves, as shown in Fig. 3.1A, with the interiors shaded. However, if
Ca lies between C and C2 as in Fig. 3.1B, and is oriented so as to have an unbounded
interior, then the shaded region is a (disconnected) region with C1, C2 and C3 as its
oriented boundaries.

FIG. 3.1

CI

Our aim now is to show that the boundary curves established in Theorem 1 are
oriented in a consistent way, so that each curve of bounded interior defines a connected
region of possibly multiple connectivity, the boundaries of the "holes" in this region
coinciding with boundary curves of unbounded interior. A curve Ci will be said to be
maximal in Cj if Ci lies in the bounded domain determined by Cj, but not in the bounded
domain of any other curve lying in the bounded domain of C, (e.g., C3 is maximal in C1
in Figure 3.1B, while C2 is not).

LEMMA 3. (i) Let C be a boundary curve ofbounded interior and let C be any curve
maximal in C.. Then C is oriented so that its interior is unbounded.

(ii) Let C be a boundary curve with unbounded interior. Then there is a curve of
bounded interior, Ci, such that C is maximal in C..

Proof. (i) LetD be the domain obtained by removing from the bounded interior of
Ci the bounded regions determined by all curves maximal in Cj. If there are no such

This terminology is motivated by the fact that inclusion generates a partial ordering on the unoriented
simple closed curves and Ci is maximal in the set of Ck < Cj in the sense of this ordering.
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maximal curves, then there is nothing to prove, so let us assume there is at least one, and
designate it Ci. Let E be a boundary element with a boundary edge on C and let P be a
point of the interior of E arbitrarily near Cj. Let Q be in D arbitrarily close to an edge of
Ci and not lying on an element edge. Then we can join P to Q by a polygonal arc in D,
which does not cross any boundary edges and can be adjusted to avoid any vertices
(since D is an open, connected set). By C2, P is in exactly one element and hence by
Lemma 1, Q is in one element, E’. However, Q may be arbitrarily close to C so E’ has a
boundary edge on C and C must be oriented so that D lies in its interior.

(ii) Let C be a circle sufficiently large to contain all the elements. If the statement
were not true, then Ci would be maximal either in C or in Cj where Ci also has
unbounded interior. We will use C to refer either to the circle or to Ci, and note that in
either case, points of the bounded region of C near C do not lie in any element of the
mesh. Then, as in part (i) let D be the domain formed by removing from the bounded
region of C the bounded regions of all curves maximal in C. Then we can pick P in D
close to C so that P lies in no element and, since D is connected and open, join it to a
point Q in a boundary element near C by an arc in violation of Lemma 1. This
contradiction establishes Lemma 3 (ii). El

This lemma shows then that every mesh boundary curve of bounded interior
defines a possibly multiply-connected region with mesh boundary curves as the region’s
boundary, and that every mesh boundary curve is a part of the boundary of such a
region. While finite element problems typically require meshes for one connected
region, there does not seem to be a compelling reason to restrict the definition of a mesh
so that its boundary curves determine only one. However, for ease of exposition, we
shall now assume that there is only one boundary curve of bounded interior and label it
Cx. Then, from Lemma 3, it follows that if K > 1 there are K- 1 curves C2, ’, CK
inside C1 oriented to have unbounded interiors, so that the region

K

(3.1) R f’) (interior of Ck)
k=l

is a bounded region of connectivityK 1, which will be defined as the covered region of
the mesh. This terminology will be justified by showing that the elements of the mesh
cover this region without gaps (in Theorem 2) and without overlap (in Theorem 3).

THEOREM 2.

E(i)= R.
i=1

Proof. To show that U E(i) R, suppose that for some and j, E(i) tq (the
exterior of Ci) is not void. Then, since the exterior of Ci is connected, we can join
P E(i) to Q Ci by an arc in exterior of Ci which passes through no mesh vertices.
Since the exteriors of the Ck are disjoint, this arc will not pass through any boundary
edges between P and Q. But near Q it lies outside every element, which contradicts
Lemma 1. If there were a point Q R E(i) then an arc from Ca to Qv could be
similarly constructed which again violates Lemma 2, so R U 1E(i).

To establish no overlap, we have"
THEOREM 3. Let P be a point of R which is neither a mesh vertex nor lies on an

element edge. Then P lies in the interior of one element.
Proof. The proof proceeds inductively by constructing a finite sequence of subsets

of elements a, cg2, , CgF, such that
(3.2a) cgi satisfies C1, C2, C3 and C4 (see below for a minor modification of C4 for this

proof), and
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(3.2b) if P lies an element E of the mesh then E
The sequence is constructed by starting with 1 the entire mesh, and by consecutively
removing elements with edges on the boundary of q3i but which do not contain P. It
terminates when there are no such elements left, with q3F, a subset of the elements such
that each piecewise linear arc of the boundary of F is an edge of an element containing
P. It is then shown that there can be only one element in F, which completes the
proof. [3

Let ,(i) denote the boundary curves of i and suppose that we have constructed
1,. , and let E with OEf3"),()=-dE(b) not empty and PC:E. Let dE(int)
dE -dE(b).

We wish to remove E from to get +. Clearly i+ thus formed is a collection of
elements satisfying C1 and C2. In order to see that it satisfies C3, we need to show that
an edge of dE(int) does not intersect any other edge of the mesh. Suppose, to the
contrary, that there were an element, H, for which one or more edges of H intersect
dE(int). These intersecting edges of H must be interior edges of 3,() since /()
satisfies C3. We can construct a curve which lies close to dE, but inside E, running in the
direction of dE, which originates at a point Q, so close to dE(b) that it lies only in E (by
C2). This curve would have to pass through H fq E at some points, which would violate
Lemma 1. Hence we conclude that 0E(int) does not intersect any edge of the mesh.
However the segments of 0E(int), become boundary segments of +, hence +
satisfies C3.

We now turn to showing that C4 is satisfied by +, i.e., that each boundary vertex
of 3’(+) has a unique outgoing boundary segment. Actually, it is necessary to modify
this condition slightly by replacing some boundary vertices by small circular arcs as
indicated below. When E is removed from i+1, the directed line segments of dE(int)
will become boundary segments of 3,(i+1)with their directions reversed, dE(int) might
be made up of several contiguous sections, but the argument supporting C4 is the same
for each, so we consider one section of it, ordering its vertices in the counter clockwise
direction around E. The outgoing boundary segment for the first vertex of a section of
0E(int) is unchanged by removing E from . For the last vertex of a section, the
outgoing boundary segment will switch from being a segment on OE(b) to being its
predecessor on dE.

For a vertex interior to a contiguous section of OE(int), there are two possibilities. If
the vertex does not lie on /(), then the outgoing boundary segment on 3,(+1) is its
predecessor on OE. However, if it does lie on 3,((), as in Fig. 3.2A, then when E is
removed, this vertex will have two incoming segments and two outgoing ones. To
resolve the resulting ambiguity, we introduce a small circular arc which cuts off the ends
of elements incident on Q, as shown in Fig. 3.2B.

If we take the circular arc sufficiently small, then the incidence relation of an
element being incident on the arc will be equivalent to the relation that an element is
incident on the vertex, Q, and P, the point referred to by the theorem statement, lies
outside the arc.

Removing E from i breaks the arc about Q into two subarcs as shown in
Fig. 3.2C, and each subarc has a unique outgoing boundary segment. Hence C4 is
satisfied by + in the sense that each vertex, or small circular arc, has at most one
boundary edge directed away from it. This is sufficient to allow the conclusions of the
previous theorems and lemmas to apply to /(c+). We conclude, then, that 3,(c+1) is a
set of boundary curves for a possibly disconnected domain in the plane. If it is
disconnected, then P will lie in one of the components and we can discard from d+ all
elements not intersecting this component and the reduced+ will still satisfy (3.2a, b).
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FIG. 3.2

Eventually this induction process leads to a subset of elements, @F, for which every
element with an edge in y(@F) contains P. If @F contains more than one element, then
y(cF) has edges from more than one element, so suppose this latter to be the case. A
point, Q, on an edge in Y(fF) belonging to element E #F can be joined to P by an arc
lying in E. At Q, this arc lies in exactly one element, whereas at P it lies in more than
one, violating Lemma 1. Hence @r consists of one element and the theorem is
proven. U

4. Construction of an element neighbors list and verification of C2. To verify C2,
we build two lists which are useful in a variety of contexts in the finite element method, a
list of elements incident on a given vertex, and a list of neighbors of each element. A
convenient method for building these lists is described by Lewis and Robinson in 11
and the basic ideas have doubtless been used in many implementations of the finite
element method. By adding some refinements to the basic ideas, we obtain an algorithm
which serves both the purposes of building these lists and checking C2 of the mesh
definition.

The method first constructs a vertex incidence list, i.e., a list whose kth entry is the
sublist e(i, k), 1, 2, ..., K(k), where e(i, k) is the index of an element incident on
vertex k. K(k) then is the number of elements incident at vertex k. The algorithm builds
the sublists e(i, k), for each k in increasing order, i.e., e(i, k)<e(i + 1, k), and it is
convenient for searching of these sublists to add a guard entry at the end of each sublist,
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e(i,K(k)+ 1) with the value Ne + 1. The algorithm is:

for k 1 to No
K(k),-O

for ] 1 to Ne
for 1 to I(i)

k-v(i,/)
rn K(k)+ l
e(m,k)i
K(k)m

for k 1 to No
e(K(k)+l,k)#Ne+l

Note that the success of this algorithm does not depend on the order of the vertex
indices in the element incidence sublists. In particular, then, its success does not depend
on the vertex orientation requirements of C1 nor the edge consistency requirements
of C2.

From this list, the algorithm constructs an element neighbors list, which is a list of
Ne entries in which the jth entry is a sublist, n(i, ]), 1, 2,..., I(j), with n(i, ]) being
the index of the neighbor of element on its ith edge, or zero if this edge is a boundary
edge. The algorithm for constructing this list consists of a synchronized scan over the
element incidence list and the boundary reference table examining the edges of
elements in order. If element ] has a neighbor on its ith edge, of index >/" then this can
be determined by searching the vertex incidence sublists of vertices v(i,]) and
v(i +l, j), the endpoints of the ith edge, for a common entry (recall (2.1), i--
mod I(])). This search is described in the next algorithm, which is labelled as a

procedure returning the common entry’s value in a variable named so that it can be
referred to in the subsequent part of this section. The variables of our discussion are
regarded as global to the procedure, and comments are enclosed in face brackets.

(4.1)

procedure find the common entry [l]
vlv(i,])

mod I(])
v2v(i +1,])
pll
p2l
while (e p 1, v 1) <- ]) p 1 p 1 + 1
while (e(p2, v2) <-]) p2p2+l
while e(p 1, v 1) e(p2, v2)

if e(pl, vl)<e(p2, v2)
then pl ,-pl + 1
else p2 p2 + 1

le(pl, vl)

The choice of guard entry at the end of each sublist ensures that the while loops
terminate. If is returned with value Ne + 1, then nocommon entry was found. If -< Ne
is returned, then it is known that v(i, ]) and v(i + 1, ]) appear in element incidence
sublist for E(l), but it is not assured that v(i + 1, ]) immediately precedes v(i, ]), as is
necessary for E(l) to be an edge consistent neighbour of E(]) according to C2. The
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following algorithm checks for a local edge numbers, tn of E(1) returning m if the ruth
edge of E(l) is consistent with the ith edge of E(]) and -m otherwise.

(4.2)

procedure find complementary local edge number [m
rnl

mod I()
while (v (m, I) v( + 1, j)) m m + 1
r <- m rood I(l)
if v(fft + 1, 1) v(i, j) then m -m

The verification o C2 requires a check that each edge of each element is either an
internal edge or a boundary edge. This information can then be used to verify that the
boundary reference table contains references to boundary edges exclusively and
exhaustively. Initially, the neighbors list is set to zero.

The verification is then carried out as in algorithm (4.3) by a scan over the mesh
edges in element order. The first step of the check is to establish the presence or absence
of a neighbor on this edge. Procedure (4.1), find common entry, is used to determine the
presence of a neighbor of index > ]. If one is found, then a check is made to ensure that
a second neighbor of index less than has not already been recorded in the neighbors
list. If not, is assigned to n(i, ); the edge consistency between these neighbors is
checked using (4.2), and the presence of element ] as a neighbor of element is
recorded. This latter assignment is made regardless of edge consistency so that the ruth
edge of element will not be interpreted as a boundary edge later in the scan. When the
status of a neighbor for the ith edge of the/’th element has been determined, the
consistency of the boundary reference table can be assessed. A scan of this table is
synchronized with the scan of element edges by maintaining a pointer, k, into the table.
The discovery of violation of C2, or the inconsistency of the boundary reference table, is
marked in the algorithm by comments, which in an implementation would be replaced
by an error recording and/or reporting mechanism. If no violation of C2 is encountered,
a valid element neighbors list is constructed. If the boundary reference table were not
constructed a priori, then the section of (4.3) which validates it could be replaced by a
section which constructs it.

(4.3)

for/" 1 to Ne {scan elements}
for 1 to I(]) {scan edge of jth element}

{establish presence of a neighbor}
find common entry [/] {via (4.1)}
ifl<-Ne

then
ifn(i,])O

then {violation of C2, multiple neighbors}
else {one neighbor of index >/’}
n(i,j)l
find complementary local edge number [m ] {via (4.2)}
if m>0

then n (m, 1) j
else {violation of C2, edge inconsistency}

n(-m,l)j
{check consistency of boundary reference table}
ifb(1, k)=/ and b(2, k)=i
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then
i| n(i,/) # 0

then {brt inconsistent, contains reference to internal edge}
if k <Nb

then k k + 1
else

if n(i, ])=0
then {brt inconsistent, reference to boundary edge omitted}

As a rough guide to the expected running time characteristics of (4.3), it can be seen
from the looping structure that if the elements have a fixed, or bounded, number of
sides, and a bounded number of them can be incident on any one vertex, then the
running times can be expected to be linear with respect to Ne and Nb, with dependence
on Ne being the dominant effect.

5. Verification of C3 and C4. Algorithm (4.3), which checks condition C2 of the
mesh definition and the consistency of the boundary reference table, is the first of three
major steps in verifying the mesh. The second involves a pairwise comparison of entries
in the boundary reference table to check C4 and part of condition C3 of the definition.
In this step, the number of independent boundary curves is determined for the third
major step, which verifies condition C1 and the remaining part of C3 in a scan over the
element list. The algorithms for these steps are designed so that they can each be run
independently of the outcome of the previous ones to provide as much diagnostic
information as possible about invalid meshes.

Several comments are in order before we embark on a more detailed discussion of
these steps. In the preceding sections, the geometric shape of the finite elements of the
mesh played little role so there was no benefit to restricting this shape beyond its being a
general polygonal domain. However, such generality adds considerable complexity to
the discussion of this section, which seems unwarranted since most of the meshes in
common use consist of triangles and quadrilaterals. We shall discuss triangular ele-
ments, pointing out that the algorithm extends directly to elements which can be
triangulated conveniently.

We have assumed that the lists to be verified do represent a valid collection of
triangles, e.g., that the values of the entries in the incidence list and boundary reference
table fall in the correct ranges, or that the entries in the vertex coordinate list are unique.
Such a check would be a useful part of a mesh verification program, but conditions that
the lists represent triangles are fairly obvious and can be checked by simple inspection
algorithms.

The third condition of the definition, C3, requires that no interval of a boundary
edge intersect any mesh element other than the one of which it is an edge. It can be seen
from the proof of Theorem 1 in 3 that the boundary edges of a collection of triangles
satisfying conditions C2 and C4 of the definition form a set of simple oriented closed
polygonal curves which do not cross at the vertices of the mesh. Suppose that one vertex
P, of such a curve is known to lie outside each element except those on which it is
incident. We shall refer to P as the starting vertex for this boundary curve, and we shall
refer to the order in which the edges appear when the boundary curve is traverse from P
in the direction of its orientation as curve order. If any edge in the curve intersects an
element of the collection of triangles in the manner forbidden by C3, then there must be
a first such edge in the curve order or edges, and this first edge must intersect some
boundary edge. The intersection may occur at the endpoint vertex) of one of the two
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edges involved, but not both, or a violation of C4 occurs. Hence condition C3 may be
divided into two subcriteria.

(5.1) C3(i) Check one point of each boundary curve to ensure that it lies
outside every element on which it is not incident.

(5.2) C3(ii) Check that no two boundary edges intersect unless they are
consecutive edges of a boundary curve.

The second major step of the mesh verification algorithm described below at (5.6)
checks criterion C3(ii) and condition C4. The outline of an algorithm for determining
when two or more of a set of Nb line segments intersect which runs in times
O(Nb log (Nb)) has been described by Shamos and Hoey in [14], which also shows that
this behavior is asymptotically optimal for this task. We describe here a simpler
algorithm which can be expected to run in times O(N ), noting that the first step of the
verification process is generally O(N), and for most region shapes O(N)= O(Ne).

An edge will be referred to as checked when criterion C3(ii) has been examined for
it, which involves comparing the edge to every other unchecked boundary edge of the
collection of triangles, except its predecessor and successor in curve order. The check of
a boundary edge from the vertex of index p to that of index q uses the function

(5.3) .(x, y)= (y(q)- y (p))(x -x(p))-(x(q)-x(p))(y y(p))

which vanishes only for (x, y) on the line through the vertices and takes values of
opposite sign for points on opposite sides of this line. If r and s are the indices of two
other vertices, then the line segment from r to s intersects that from p to q only if

(5.4) l,.,(x(r), y(r)) [.(x(s), y(s)) -<_ 0 and

(5.5) Ks(x(P), Y(P)) Ks(x(q), Y(q)) -< 0.

The boundary edges are checked along each boundary curve in curve order. For
the scanning of a curve, three pointer variables into the boundary reference table are
used; a pointer named start which marks the starting vertex of the first edge of a curve to
be checked, a pointer, k, into this table is maintained to reference the edge currently
being checked, and a pointer, next, is maintained to the successor of edge k. When next
coincides with start, the curve has been scanned. If unchecked boundary edges remain,
it is necessary to reinitialize start on a new boundary curve.

To keep track of which edges have been checked, algorithm (5.6) uses a temporary
boolean array of length Nb named "checked" with "checked (k) true" when the edge
described by the kth entry of the boundary reference table has been checked. This step
of the algorithm also determines the number of distinct boundary curves, and the
indices of one vertex on each curve, which is used by the third step of the verification
algorithm to check criterion C3(i). This information is stored in algorithm variable
"ncurves" and array "by(i), 1 to ncurves" respectively.

The algorithm (5.6) requires a valid boundary reference table, as provided from
algorithm (4.3) of the preceeding section. As long as C2 and C4 are not violated, then
each boundary edge has a unique successor (Theorem 1 of 3) so that the algorithm can
proceed to check all edges. However, if a violation of these conditions has occurred this
is no longer guaranteed, which could result in an infinite loop developing during the
scanning of a boundary curve’s edges. Hence, the outer control structure of algorithm
(5.6) is a "while" loop with two exit criteria, (a) nchecked=Nb, regarded as the
"normal" exit, although it may occur with invalid as well as valid meshes, and (b)
next k indicating that no successor was found for the edge referenced by the kth entry
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of the boundary reference table, which can only occur for an invalid mesh. Algorithm
(5.6) requires the following initializations of variables:

n curves
nchecked
k
next
start
for m 1

0
0
0

to N
checked (m) <- false

(5.6)

while n checked < Nb and next k
{check if current boundary curve is complete}
if next start

then {initialize next to start of new boundary curve}
next <-- 1
while checked (next) next <-- next + 1
start <-- next
n curves <-- n curves + 1
bv(ncurves)<-- v (b(2, start), b(1, start))

k <-- next
p-v(b(2, k),b(1, k))
q - v(b(2, k)+ 1, b(1, k))
for m 1 to Nb

if m k {check ruth boundary edge against kth}
then
rv(b(2, m),b(1, m))
s v(b(2, m)+ 1, b(1, m))
ifp=r

then {violation of C4}
ifq=r

then {ruth edge is successor of kth edge}
next - melse
if not checked (m)

then
if edges intersect {using (5.4)}

then {violation of C3 (ii)}
n checked n checked + 1
checked (k) true
{end of while loop}

The third major step of the algorithm involves a scan over the elements to verify
C1, i.e., that their vertices are listed in the element incidence list in counter clockwise
order, and C3(i) of (5.1), i.e., the starting vertices of the boundary curves do not lie in
elements other than those of which they are incident as vertices. These checks can be
conveniently implemented for triangular elements using the familiar transformation to
the area coordinates of an element. For completeness, we review the formulae for this
transformation, which can be found, e.g., in 19]. Let the coordinates of the/’th element
be

(5.7) Xk x(v(k, ])), Yk y(v(k, ])), k 1, 2, 3
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and let

(5.8)
A1 (y2- y3)/D,

A2=(y3-Yl)/D,

A3=(yl-Y2)/D,

D =det
1 x1

1 X2

1 x3

Bx=(x3-x2)/D,

B2=(Xl-X3)/D,

B3=(x2-xl)/D,

Yl

Y2

Y3

C =(x2y3-x3y)/D,

C2 (x3yl-xy3)/D,

C3=(xy2-x2y)/D.

Then the area coordinates relative to the triangle E(]) of a point of the plane having
Cartesian coordinates (x, y) are the three numbers

(5.9) Li(x, y) Aix +By + C, 1, 2, 3.

Their significance to our discussion is that (x, y) lies in E(]) if and only if 0 <-L(x, y) _<- 1
for 1, 2, 3. Moreover, the vertices of E(/’) form a triangle and are specified in counter
clockwise order if and only if D > 0.

The scan for verifying C1 and C3(i) can be described by the following algorithm,
using data concerning the number of boundary curves and a starting vertex on each,
ncurves and by(i), 1 to curves from (5.6) and the vertex incidence list, e(k, n), k 1
to K(n), n 1 to No from (4.3).

for j 1 to Ne
compute D {via (5.8)}
ifDO

lhen (violation of C1}
for n 1 to ncurves

{check if element ] is incident on vertex of index by(n)}
fork 1 to K(bv(n))

if] e(k, by(n))
then incident <-- true

if not incident
(5.10) then {check if vertex of index by(n) lies in element ]}

x<-x(bv(n))
y<--y(bv(n))
compute A l, B, CI, L(x, y) {via (5.8)}
if 0-<_L-<_ 1

then
compute a2, B2, C2, L2(x, y) {via (5.8)}
if 0_-<L2_-< 1

then
compute A3, B3, C3, L3(x, y) {via (5.8)}
if 0<_-L3_-< 1

then {violation of C3(i)}

6. Performance of a FORTRAN implementation. A FORTRAN implemen-
tation of the mesh verification algorithm has been prepared and some tests run on
regular meshes to provide some evidence of run time performance, which we discuss
here; some tests have been run as well to check out the various mesh errors detected,
which are not reported here. The meshes for the performance tests comprise two
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families, each characterized by a parameter N which is proportional to the number of
elements in the mesh. One famil,_is a collection of valid meshes on a hollow square, as
shown in Fig. 6.1, and having 3sIN triangle edges along each outer side of the square,
and triangle edges along the inner sides of the "hollow". The second family is a
collection of invalid "meshes" created by folding the meshes of the first family along the
line y x/3, i.e., by applying the tranformation

j(x, y)
(g, 37)= [(4x + 3y, 3x-4y)

if y >=x/3,
if y <x/3.

FIG. 6.1

The meshes are quite regular in the sense that 6 triangles meet at each interior vertex,
and less than 6 meet at each boundary vertex; hence one would expect the algorithm’s
running time to be proportional to N. The Fortran implementation used for the test was
compiled using the IBM optimizing compiler, Fortran H extended, and executed on the
University of Waterloo’s IBM 3031. For the tests involving the invalid meshes, the
details of the mesh error were determined in each case, but the detailed output of these
details was not performed.

The running time for the algorithm to check meshes 1600 to 4096 triangles are
shown in Tables 6.1 and 6.2, along with slopes of successive line segments of the graph
of running times versus N. The algorithm seems clearly to be behaving as linear in the
number of triangles in the mesh, at least over this range of meshes. It can be seen that
there is a slight premium to be paid for the determination of the nature of the errors in
the invalid meshes.

Acknowledgment. The author, and one hopes the manuscript, have benefitted
from referee’s suggestions.
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TABLE 6.1
Test timings for valid mesh on hollow square.

No. of time ti Slope
Ni Triangles (seconds) (t t-t)/(N N-I)

100 1,600 3.7
2 144 2,304 5.3 .036
3 196 3,136 7.3 .038
4 256 4,096 9.5 .037

TABLE 6.2
Test timings for invalid (folded) mesh on hollow square.

No. of time ti Slope No. of errors
N Triangles (seconds) (ti ti-1)/(Ni -Ni-1) reported

100 1,600 4.4 254
2 144 2,304 6.3 .043 375
3 196 3,136 0.5 .042 522
4 256 4,096 11.2 .045 692
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A BIDIAGONALIZATION-REGULARIZATION PROCEDURE
FOR LARGE SCALE DISCRETIZATIONS

OF ILL-POSED PROBLEMS*
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Abstract. In this paper, we consider ill-posed problems which discretize to linear least squares problems
with matrices K of high dimensions. The algorithm proposed uses K only as an operator and does not
need to explicitly store or modify it. A method related to one of Lanczos is used to project the problem
onto a subspace for which K is bidiagonal. It is then an easy matter to solve the projected problem by
standard regularization techniques. These ideas are illustrated with some integral equations of the first
kind with convolution kernels, and sample numerical results are given.

Key words, ill-posed problems, Lanczos algorithm, regularization, first kind integral equation

1. Introduction. In this paper we discuss techniques applicable to the solution
of those ill-posed problems which, upon discretization, give rise to large linear systems
of equations. In particular, our examples are drawn from integral equations of the
first kind,

b

k(s, t)f(t) g(s)dt

or

min
b 2

which discretize to the linear system

Kf g,

or to the minimization problem

K: mxn,

f:nxl,

g:ml

m n,

min IIKf
f

Such continuous problems are characterized by the fact that small changes in the
function g can cause large changes in f. This is reflected in the discrete problem by
ill-conditioning in the matrix K. Since such perturbations can be due to unavoidable
noise in measurements of g or to roundoff errors in the calculation, algorithms for
numerical solution of the discretized problem must be designed to minimize the effects
of these perturbations.

Various techniques for solving linear ill-posed problems are discussed in a good
survey paper by Bj6rck and Eld6n [3]. We do not attempt an exhaustive review of
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these techniques here, but note that two of the most popular methods are based on
the following techniques"

(1) Regularization. We use this term in a broad sense [3] to describe methods
which replace the original operator by a related one which diminishes the effects of
errors in the data. For example, the function to be minimized might be replaced by

min IIg- gll + IIIIL
where Ilfll=f*L*Lf for some full rank matrix L, y is a positive scalar parameter,
and the superscript * denotes complex conjugate transpose. This is equivalent to
solving the system of equations

(K*K + yL*L)[= K*g.

Thus the operator K*K of the normal equations for the original problem has been
replaced by an operator K*K + yL*L. The choices of y and L, guided by the physical
characteristics of the problem and of the noise, give a problem for which the operator
is better conditioned but which has a solution close, in some sense, to that of the
original problem.

(2) Pro]ection. The approximate solution [ is constrained to lie in a specified
subspace given by the columns of a matrix V. In this case we have a modified problem,

min IlgVh gll
h

or

V*K*KVh V*K*g, .f Vh.

The new operator, V*K*KV, is K*K restricted to a subspace upon which it is better
conditioned.

The technique we consider is a projeetion-regularization method. In the first step,
the problem is projected onto a subspaee defined by a bidiagonalization algorithm.
The restricted operator is typically still ill-conditioned. In the second step a regulariz-
ation is applied on the subspace. The reason for this approach is that regularization
of the restricted problem can be less expensive and, if the subspaee is chosen properly,
the final results are not significantly degraded. The algorithm and its properties are
presented in 2. Potential applications of the algorithm include:

(i) Problems for which n multiplications by the operator K are significantly less
expensive than faetorization of the matrix.

(ii) Problems for which storage does not permit regularization of the original
problem.
Thus, problems for which K is sparse or K is structured so that its storage and
matrix-vector multiplication time are both less than O(mn) are possible candidates for
this algorithm. Examples of such problems and sample computational results are given
in 4.

2. The bidiagonalization-regularization algorithm. The algorithm proceeds in
two steps. First the problem is reduced to one on a subspace which is computationally
much more economical. Then standard techniques of regularization can be used on
the reduced problem. The two steps are defined in 2.1 and 2.2, and properties of
the algorithm are discussed in 2.3. A different algorithm based on bidiagonalization
has been proposed independently in [2].
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2.1 The Lanczos bidiagonalization. The subspace chosen over which to solve the
problem is that generated by the "Lanczos" algorithm for bidiagonalization. This
algorithm was investigated by Paige [20], named and described in block form by
Golub, Luk and Overton [11] and used in a different context by Moler and Stewart
[19]. It is a specific computational implementation of the bidiagonalization procedure
of Golub and Kahan [10], proposed as the first step of computing the singular value
decomposition of a matrix. It is related to ideas of Lanczos [16] and [17].

The Lanczos bidiagonalization algorithm takes an m x n matrix K and factors it
as

U*KQ =B, U: m xrn,

B’mxn,

Q’nxn

or

where U and Q are orthonormal,

K UBQ*,

and B is bidiagonal,

U*U =L O*O=I,

This is done using very elementary manipulations: we need to form the product of K
and K* with various vectors and to take linear combinations and inner products of
vectors. Furthermore, rather than carrying out the full algorithm, it can be terminated
early to give a factorization of K as an operator over a subspace’

where

U’KQk Bk,

[31

Uk" m Xk,

Qk’nXk,

Bk’kxk,

u,, =i, =I.
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The matrix B has the same singular values as K, and the singular values of Bk can
be shown to be close to certain of K’s, typically its largest and smallest [11].

The algorithm can be derived from the relations KQ UB and U*K BQ*. It
proceeds as follows [11].

Given K" m x n and zx" n x 1 an arbitrary nonzero vector, set

z Ylq -x y Kq ,=llyxll, u=--.,,1
For i= 1, 2,. , k-l,

Zi+l K*ui otiqi,

Zi+l
qi+l

Yi+I Kqi+l-iui,

Ui+l
Oi+1

The vector qi(u) is the/th column of the matrix Q(U).
Operations counts and properties of the algorithm will be discussed in 2.3.

2.2 Regularization of the bidiagonai problem. Our original discretized problem
was to solve

min IIK- gllzz
f

If we decide to consider only those vectors f contained in the subspace spanned by
the columns of Qk, i.e.,

f=Okh for someh’kxl,

and try to minimize the residual only in the directions spanned by the columns of Uk,
we have the reduced problem

min IIu (KOkh g)ll min IIn,h Ugll.
h h

This problem is typically still highly ill-conditioned, because while the matrix Bk
usually contains very good approximations to the large singular values of K [11], it
also has singular values which are rough approximations to the small ones. Thus
forming and solving the normal equations

B*Bkh BUg

will probably not give an acceptable solution. On the other hand, we have reduced
our problem to one of smaller dimension having a matrix that is bidiagonal. Thus,
any of the standard regularization or projection procedures [3] will be economical.
For example, we can use a truncated singular value decomposition, (SVD) expressing

Bk VXW*, W*W I, V* V I,

X diag (trx, 0"2," O’k), 0"1 > 0"2 =>" - O’k - O,
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defining a truncated pseudo-inverse for

and then setting

E=diag( 1 1 )0"1 O’r

v*iUg
h WY-,r+ V* U’g wi,

i= O’i

where wi(vi) is the ith column of W(V), Y--r diag (o’1,’’’, rr, 0," ’, 0), O"r > 0, and
the superscript "+" denotes the pseudo-inverse. This method might be considered
either a regularization method or a projection method.

As another alternative we could take a damped SVD approach, substituting a/
for 1/i in the above expression for h, where the ai form a sequence of decreasing
positive numbers. The damping factors might be determined using generalized cross
validation techniques [9], [28].

These SVD approaches are O(k3) processes. Even more efficient methods have
been suggested by Eld6n [6] [7] and Gander [8], basing the regularized solution
directly on the bidiagonal form and producing a solution in O(k) operations.

2.3 Properties and extensions of the algorithm. For definiteness in the discussion,
we assume in this section that a truncated singular value regularization is performed.

(A) The operations count for the Lanczos bidiagonalization is 3(n + m)k multipli-
cations plus 2(n + m)k additions plus k matrix-vector multiplications involving K and
k- 1 involving K*. The SVD, as mentioned above, is O(k3), and the final solution
is calculated in (n + m)k additions and multiplications. Thus if k is small compared
with n, significant savings can be realized with respect to the cost of the full singular
value decomposition algorithm, an O(nm) process.

(B) The Lanczos bidiagonalization can easily be implemented with 2n + 2m + 3k
storage locations in fast store (q, K’u, u, Kq, , , U’g), with the vectors q saved in
auxiliary storage as they are computed. For the singular value decomposition, 2k + k
locations are required for V, W and . To compute the solution, these three matrices
are used to form h, and then f is formed in O(nk) operations with access to the
vectors q. Thus, for efficient implementation, the storage requirement is that required
for K plus max (2n +2m + 3k, 2kZ+ 2k) in main storage, plus nk in auxiliary to be
written and read once sequentially. (By rearranging the algorithm slightly the storage
of V could be avoided.)

(C) If several problems are to be solved involving the same operator K, it can
be more economical to also save the u vectors. In this way, the Lanczos iteration and
the singular value decomposition need to be performed only once.

(D) If there is not enough storage available to store the q sequence, the q vectors
can be regenerated by running the Lanczos algorithm again using the same starting
vector.

(E) For very ill-conditioned problems, reorthogalization of the q and u vectors
may be necessary to preserve computational stability [22], [5], [24]; although in theory
qqi uui =0, , in practice this may be far from being satisfied. In this case it
may be necessary to perform modified Gram-Schmidt orthogonalization on the sequen-
ces. As each z is calculated, we would perform the iteration

For ] l, 2, 1, Zi Zi (z qi)qi,
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before normalizing zi. A similar process would be performed on the y sequence. This
reorthogonalization can be done in a selective manner, depending on the magnitude
of the inner product of the ith and jth vectors, or by running the loop from i- 1 to
i-s for some s < i. In the case of full reorthogonalization the added cost is (n + rn)ka.

(F) There are two arbitrary parameters in the method: the number o Lanczos
steps (k) and the number of retained singular values (r). The choice of these is problem
dependent, and needs further investigation. Limited computational experience is
summarized in 4.

(G) For certain singular value distributions, it may be advantageous to use the
block Lanczos algorithm of Palmer [23] or Golub, Luk and Overton [11]. This can
improve the convergence by reducing the number of vectors q and u necessary for
an acceptable solution. The number of accesses to K and K* is reduced by forming
their products with several vectors at once; thus the method is also useful, regardless
of the singular value distribution, if K is stored in secondary memory and if there is
room for one or more extra pairs of vectors of dimension n and m in main memory.

(H) "Preconditioning" techniques can be incorporated either to accelerate con-
vergence or to change the character of the approximate solution. These two uses of
preconditioning are described below.

(i) The problem

min ILK/’- gll@

is equivalent to

min IIKN - gll ,

where N is any nonsingular n x n matrix and f Nf. If the singular value spectrum
of KN has better clustering of the singular values than does K, the number of Lanczos
steps necessary can be significantly reduced. The price paid is an extra matrix-vector
multiplication byN and byN* at each iteration. This idea has been exploited previously
in the solution of linear systems (e.g., [1], [4]) and certain least squares problems [26].

(ii) A common technique in many of these problems is "filtering" [13]. In this
case K and g are both preconditioned by some operator M, changing the problem to

min IIMK- Mgl122.

Again the convergence rate is improved if the spectrum of MK has good clustering
properties. The regularized solution ]’ will be different from the ]’ above. The operator
M should be chosen to filter out undesirable components of K and g, for example,
highly oscillatory modes which are due to random errors in the measurements.

3. A time series deconvolution problem. We consider a special class of problems
for which the algorithm in the previous section is applicable. In the case of interest,
the integral equation

b

k(s, t)[(t) g(s)dt

has a kernel of convolution type

k (s, t) k (s t)

and b s.
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Upon discretization, our problem becomes Kf g, where

ao
al ao

n-1 an-2 ao

Thus K is lower triangular and Toeplitz. The time series involved are "causal,"
meaning that k(t), [(t) and g(t) are zero for negative values of their arguments. If k
is continuous, then aj is small or small values of ], and these small numbers near the
main diagonal o K cause ill-conditioning and prevent us rom solving the system
accurately by a simple forward substitution algorithm or by the aster algorithms for
solving Toeplitz systems (e.g., [12]).

To understand the nature of this ill-conditioning, it is convenient to study a
permuted version of the system, formed by reordering the equations from last to first:

$n--2

We denote this reordered system by K’f= g* and note that K PK, where P is
the permutation matrix formed by writing the rows of the identity matrix from last
to first. K* is a Hankel matrix and is indefinite.

Now K is a defective matrix; it has n eigenvalues equal to a0 but only one
eigenvector, the last unit vector e, [0, , 0, 1]r. But K* is symmetric and thus has
a full set of orthonormal real eigenvectors wi with eigenvalues

K* wi o’iwi i=l, 2,...,n

or

where

K*= wr.w,

Thus K PK*= (PW)2,Wr and this, aside from the signs of the tr and those of the
columns of PW, is the singular value decomposition of K. Therefore, we have a
representation of K as a sum of n rank one matrices:

K= thwwS, w’*, =Pwi.
i=1

If K is nonsingular (ao 0), its inverse is

w wT.
i=10"i
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If K is singular (a0 0), we have the pseudo-inverse

K+=, 1

i=l O"

where Itrrl > 0, trr+l tr, 0.
From the decomposition above we can isolate the source of trouble in solving

the linear system K*f g*. (A similar analysis could be performed for the continuous
problem.) Suppose that ao," , a_ are zero. Then

This matrix has n-s eigenvalues equal to those of A, with eigenvectors of the form

0
#’(n-s)xl

and s zero eigenvalues equal to those of A, with eigenvectors

where the e are s x 1 unit vectors. I ao,’", a_ are small rather than zero, the
eigenstructure will be similar, but all of the zeros will be perturbed slightly [29]. The
unregularized solution to the problem is given by

1 T @f= E--wg w.
i=1 i

Thus there will be large contributions to the solution from the small singular values
if g# has any components in a direction [0, e] 1,..., s. This means that noise
in the first part of the vector g will be magnified by large factors and added to the
last part of the solution vector fi

In some of these problems it was observed that the Fourier vectors are approximate
eigenvectors for K*. This can be explained by considering the problem in the frequency
domain rather than the time domain. Let the matrix F be defined by

Then F*F I. Suppose the sequence (a,-1, , a0) is band-limited; i.e.,

where J is an index set of cardinality m, small compared with n. Then if the norm of
the vector [a,-l,’", a0] is small compared with the norm of the full vector
[a,-1,’’’, ao], the columns of F corresponding to indices in J are an approximate
invariant subspace of K; i.e., there is a subset of eigenvectors of K whose span is
approximately that of those columns. To see this we form

F.K.F [ C1 C2] Cl" m x m
C3 C4’
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(where F is reordered if necessary to put the columns with indices/"J first) and
show that IIC311 is small. Then, by [27, Thm. 4.11], the desired result follows. Now

where 8 (81,’", 8,, 0,..., 0)r and the vectors ui are m 1. Now, the norms of
the first few vectors Ixi are small because the first few columns of K* differ from its
first column by small perturbation terms. The norms of later vectors Ixg are small
because the norm of 8 r +[uT, ix/T] is equal to the norm of the ith column of K, which
is small compared with the norm of the first column. Thus F*K * has small entries
in all rows not indexed by J, and therefore F*K*F is also small in those rows.

This Fourier property of the eigenvectors means that a truncated singular value
decomposition often gives results indistinguishable from filtering.

In using the algorithm of 2, we can take advantage of three simplifications"
(1) Since K * is symmetric, we can use the Lanczos tridiagonalization procedure

[17], [21] rather than bidiagonalization. This requires approximately half of the work
and storage, since the u sequence is redundant, and only one matrix multiplication
is needed per step. The. resulting algorithm is"

Given K* and 2’1" n x 1, an arbitrary nonzero vector, set

For i= 1,2,...,k-1

Z1
ql IIz,ll’

’kil 1.

Zi+ Kqi Oiqi xttiqi-1,

Oi q fKqi,

Zi+l
qi+l

Iti+

The algorithm performs better numerically if 0 is calculated as q(K*q--xIiqi_l).
(2) Since the resulting B is symmetric tridiagonal rather than bidiagonal, we can

compute its eigendecomposition rather than its singular value decomposition. This
cuts the storage required from 2k2+ k to k2+ k, and also involves less computation.

(3) There exist fast algorithms for forming the product of K * with an arbitrary
vector. This arises from the relation of K to a circulant matrix. Let

-ao
al ao

an-1 an-2

an-1

ao

an-1 al

ao
an-1

an-1 ao
Then Kc is a square circulant matrix of dimension p -_> 2n 1. The eigenvectors of any
circulant matrix are the Fourier vectors, the columns of the p p matrix F defined
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above. The eigenvalues are given by the components of the Fourier transform of its
first column’

an-1F
0

0

Thus, Kc FAF* where A =diag (hi,’’ ", hp). Note that to form the product of K
with an arbitrary vector x, we can form the product of Kc with the vector x padded
by zeros, and take the first n components of the result. To do this, the vector

X

is calculated in three steps"

(b) Yi Iii, 1, 2, , p,

(c) z Fy.

Then Kx is given by the first n components of z. Step (b) costs p operations, while
(a) and (c) are Fourier transforms of p-vectors and cost O(p log2 p), for example, if
p is chosen to be a power of 2.

4. Numerical examples. Two sample problems were chosen in order to demon-
strate the algorithms of 2. The experiments were run in single precision on a Univac
1108 computer. In each case the initial Lanczos vector Zl was taken to be g. Machine
storage limited the number of Lanczos vectors for the largest problem to be less than
or equal to 40, so k 25 and 40 were taken as representative values. The number of
singular values to be dropped was guided by the uncertainty in the data, but further
investigation would be needed to make the procedure automatic.

Example 1. The following integral equation has been studied, for example, in
[8], [5]:

6

k(s, t)f(t) g(s), Isl--< 6,dt
6

(t-s)r
k(s,t)= l+cos

3
0, otherwise,

Isl=<6,

( 1 sr) 9 Islet, Isl <-- 6,g(s)=/(6-1sl) +eos- +--sin 30, otherwise,

Solution: f(s)- k(s, 0).

The right-hand side g and the solution f are plotted in Fig. 1. The integral equation
was discretized using the trapezoidal rule with steplength 12/(n- 1). This yields a
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FIG. I. Example 1, functions f and g.

symmetric banded Toeplitz matrix if the first and last unknowns are replaced by their
values divided by 2; see [18] for details. The discretization of f does not satisfy the
linear system exactly, but this discretization was taken as the "true" solution to the
problem. The Lanczos algorithm with truncated singular value regularization was run
with no reorthogonalization of the Lanczos vectors.

This problem is only mildly ill-conditioned. For n 25 the calculated condition
number (the ratio of the largest and smallest nonzero singular values) was O(102),
and the maximum error after one singular value was dropped was less than 3 x 10-3.
For n 49, the estimated condition number based on k 40 Lanczos steps was also
of this order. In this case, best results for the. solution (giving maximum error less
than 10-3) were obtained by dropping no .singular values.

Figure 2 shows the results for n 97 with k 25 and 40. The condition number
for k 40 was O(103). One singular value was dropped for k =40, none for k 25.

Example 2. This is a time series problem drawn from the field of acoustic emission.
The kernel, plotted in Fig. 3, is the theoretical displacement response of a certain
horizontal elastic plate [14] to a vertical step function force term applied at a point
on one of the faces. The response is measured directly below the force, on the opposite
face of the plate. The kernel was sampled at n 512 points, and convolved numerically
with a discretization of the function shown in Fig. 7. The resulting function, truncated
to eight bits, was used as g. Elements in g ranged from 0 to 53, and the residual norm
ILK/-gll was 10-. Figure 4 shows the results of using forward substitution on the
linear system Kf g to solve the time series deconvolution problem. This demonstrates
the need for regularization of the solution.
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.o-.s.o-4.0 -d.o-Lo o.o ;to .o S.O3.D

SOLID: k"O,r"39
DFISHED: k"25, r-’2S

:’II
’|

i/

,, .,,,I.

il I

II

FIG. 2. Example 1, error in computed solution, n 97.

0.o O-’.i o’.,- o’.: o’., o.s" o: 1.00.90.7 0.8

FIG. 3. Example 2, kernel function.
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FIG. 4. Example 2, lorward substitution solution.

:3LID= NLt,h Ror-t,hogonaLLzat,Lon, r’-22
DR$1"IF.D Ho Ror-t,hogona Lzat,Lon,

o., d. o’. o., o. .o0.6

FIG. 5. Example 2, error in computed solution, k 25.
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FIG. 6. Example 2, error in computed solution, k 40.

SOLID= k"O SoLut,Lon, No Reor,thogonaLLzot,Lon
Df:ISI’tED= 7r-ue SoLu’t,Lon

;\

’+"
;I

/-

o’.o o. o.,- o’.: g.+ o’.s o’., o’.,,I),7 o.g

FIG. 7. Example 2, sample solution.



488 DIANNE P. O’LEARY AND JOHN A. SIMMONS

The results in Fig. 5 were obtained using k 25 steps of the Lanczos algorithm
with and without complete reorthogonalization. Three singular values were dropped
in the calculation with reorthogonalization, two without. The estimated condition
numbers were O(104).

Analogous results for k 40 are shown in Fig. 6, dropping 18 singular values
when reorthogonalization is performed, and 2 without reorthogonalization. Figure 7
is a comparison of the true and computed solutions without reorthogonalization. By
this stage, significant roundoff error has entered into the nonreorthogonalized process,
as evidenced by the appearance of spurious copies of several singular values. See [5],
[15] for an explanation of this phenomenon. This meant that ewer small singular
values appeared, but despite the complete loss of orthogonality of the Lanczos vectors,
a good solution vector could still be reconstructed.
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